

Colorability, Chromatic Number and its Applications on Graph Theory

¹Faimida Begum, ²Meenakshi Vaijinath Rao

¹Associate Professor, Department of Mathematics, Government First Grade College, Raichur

²Associate Professor, Department of Mathematics, Government First Grade College, Chituguppa

Abstract: Graph coloring and the related concept of the chromatic number constitute fundamental paradigms in graph theory, bridging deep theoretical insights with a diverse array of practical applications. At its core, the chromatic number $\chi(G)$ denotes the smallest number of colors required to assign labels to the vertices of a graph G so that no two adjacent vertices share the same color. Determining this invariant is known to be NP-hard, motivating extensive research into algorithmic techniques, bounds, and heuristics to estimate or compute it for large graph classes. Beyond pure mathematical interest, chromatic considerations arise naturally in real-world problems such as scheduling, register allocation, frequency assignment, and optimization in distributed networks. Researchers have explored recurrence relations for expected chromatic values of random graphs and hybrid heuristic solutions that optimize coloring performance across diverse graph instances. Moreover, refinements like distance-2 chromatic numbers and specialized coloring frameworks (e.g., fair, tolerant, or mutual-visibility colorings) have emerged to address nuanced structural and application-driven requirements. This paper systematically surveys recent developments in colorability and chromatic number theory, discusses algorithmic advancements, and highlights salient applications that illustrate the enduring relevance of these concepts in modern combinatorial optimization and applied graph analysis.

Keywords: Graph coloring Chromatic number Colorability Graph theory applications Coloring algorithms Graph invariants

1. Introduction

Graph theory has emerged as one of the most influential and unifying branches of discrete mathematics, providing a rigorous mathematical language for modeling relational structures across diverse scientific and engineering disciplines. From classical problems in topology and combinatorics to contemporary applications in computer science, communication networks, and optimization, graphs offer an elegant abstraction to represent interactions among entities. Among the central concepts in graph theory, *graph coloring* occupies a pivotal position due to its profound theoretical depth and extensive practical relevance. The notion of assigning colors to graph elements under specified constraints not only leads to challenging combinatorial problems but also encapsulates real-world constraints in an intuitive and mathematically tractable manner.

Vertex coloring, in particular, seeks to assign colors to vertices such that no two adjacent vertices share the same color. The minimum number of colors required to achieve such an assignment is termed the *chromatic number* of the graph, denoted by $\chi(G)$. This invariant serves as a fundamental measure of a graph's complexity and has been extensively studied in both deterministic and probabilistic frameworks. Despite its apparently simple definition, determining the exact chromatic number of an arbitrary graph is an NP-hard problem, placing it among the most computationally challenging problems in theoretical computer science. Consequently, research on chromatic number has evolved along multiple dimensions, including structural bounds, approximation algorithms, heuristic methods, and special graph classes for which exact results can be obtained.

The theoretical importance of colorability is closely intertwined with landmark results such as the Four Color Theorem, Brooks' Theorem, and Vizing's Theorem, which collectively demonstrate the rich interplay between graph structure and coloring constraints. In recent years, the focus has expanded beyond classical vertex coloring to encompass generalized and constrained coloring paradigms, including distance-based colorings, edge

colorings, total colorings, locating colorings, fair and tolerant colorings, and mutual-visibility colorings [1]–[3], [6], [12]. These advanced formulations address limitations of traditional coloring models when applied to complex systems characterized by spatial, probabilistic, or multi-objective constraints.

Simultaneously, advances in computational power and algorithmic design have revitalized interest in practical coloring algorithms capable of handling large-scale graphs arising from modern applications. Graph coloring now plays a central role in scheduling theory, register allocation in compilers, frequency assignment in wireless networks, peer-to-peer blockchain optimization, and distributed systems design [7], [8], [10]. The integration of heuristic, greedy, Monte Carlo, and centrality-based approaches has significantly improved solution quality for large and dense graphs, even when optimality cannot be guaranteed [4], [9]. These developments underscore the necessity of a comprehensive and up-to-date examination of colorability and chromatic number theory that bridges classical results with emerging applications.

This research paper presents a systematic and in-depth study of colorability and chromatic number in graph theory, with particular emphasis on recent theoretical developments, algorithmic strategies, and application-oriented perspectives. The scope of the paper spans foundational definitions and properties of graph coloring, modern variants of chromatic parameters, and real-world implementations that motivate ongoing research. Rather than treating graph coloring as a purely abstract construct, this work situates it within the broader context of combinatorial optimization and applied graph analytics.

The primary objectives of this paper are fourfold. First, it aims to consolidate contemporary research on colorability and chromatic number, highlighting significant theoretical contributions and extensions beyond classical vertex coloring. Second, it seeks to critically evaluate algorithmic methodologies proposed in recent literature, identifying strengths, limitations, and performance trade-offs across different graph classes. Third, the paper endeavors to expose unresolved challenges and research gaps that persist despite decades of study, particularly in the context of large-scale, dynamic, and application-driven graphs. Finally, it aims to demonstrate the continuing relevance of chromatic concepts through a synthesis of modern applications in engineering, computer science, and networked systems.

The motivation behind this work arises from the rapid expansion of graph-based modeling in contemporary research domains, where traditional coloring assumptions often prove insufficient. Emerging applications demand flexible, scalable, and context-aware coloring frameworks that can adapt to real-world constraints such as fairness, tolerance, visibility, and distance metrics. While numerous studies address isolated aspects of these challenges, a unified academic exposition that integrates theory, algorithms, and applications remains limited. This paper seeks to address this deficiency by offering a structured and critical overview grounded in recent scholarly contributions.

The remainder of the paper is organized as follows. Section 2 presents a comprehensive literature review, synthesizing classical and contemporary studies on graph colorability and chromatic number while identifying key research gaps. Subsequent sections (to be developed) will formalize theoretical foundations, discuss algorithmic frameworks, and analyze application domains in detail. The paper concludes with a critical discussion of open problems and future research directions, reinforcing the central role of graph coloring in advancing both theory and practice.

2. Literature Review and Research Gap Analysis

The study of graph coloring traces its origins to the early development of graph theory, where foundational work established the chromatic number as a core invariant for understanding graph structure [19], [20]. Classical texts provided rigorous definitions, fundamental bounds, and early applications, laying the groundwork for decades of subsequent research. These early studies primarily focused on planar graphs, complete graphs, bipartite graphs,

and other well-defined classes, enabling exact determination of chromatic numbers and the formulation of seminal theorems.

With the maturation of the field, attention shifted toward computational complexity and algorithmic feasibility. It became evident that while chromatic number determination is tractable for certain graph families, it is computationally intractable in general. This realization catalyzed the development of approximation algorithms and heuristics, particularly greedy coloring strategies and local search methods. Lewis [15] provided a comprehensive synthesis of these algorithmic approaches, demonstrating how practical solutions can be obtained despite theoretical hardness.

In recent years, research has expanded significantly into probabilistic and random graph models. Abe *et al.* [3] introduced recurrence-based analytical techniques to estimate the chromatic number of random graphs, contributing to a deeper understanding of expected coloring behavior in large networks. Such probabilistic approaches are especially relevant for modeling real-world systems where graph structure is inherently uncertain or dynamic.

Parallel to theoretical advancements, a substantial body of work has focused on improving algorithmic efficiency. Yakut [4] proposed a robust coloring algorithm leveraging centrality measures and independent sets, achieving notable performance gains for dense graphs. Similarly, Kralev and Kraleva [5] examined the influence of graph density on approximate coloring algorithms, revealing critical trade-offs between solution quality and computational cost. Monte Carlo-based strategies have also gained traction, as demonstrated by Cazenave *et al.* [9], who explored stochastic optimization techniques for large-scale graph coloring.

Beyond traditional vertex coloring, contemporary research increasingly emphasizes generalized chromatic parameters. Distance-2 coloring, locating coloring, and neighbor-locating coloring address limitations of classical models in applications requiring enhanced distinguishability among vertices [10], [12]. Abel *et al.* [6] investigated locating chromatic numbers for cyclic chain graphs, contributing precise results for specialized graph classes. These studies highlight a broader trend toward problem-specific coloring frameworks tailored to application demands.

More recently, novel paradigms such as fair and tolerant colorings [2] and mutual-visibility colorings [1] have been introduced to model equity, robustness, and visibility constraints in modern networks. These approaches represent a significant conceptual shift from purely conflict-avoidance coloring to multi-objective formulations that incorporate qualitative considerations. Surveys on r-hued and related colorings [13] further illustrate the growing diversity of chromatic concepts.

Applications of graph coloring have also expanded dramatically. Švarcmaier *et al.* [7] demonstrated the utility of greedy coloring variants in optimizing peer-to-peer blockchain networks, while Manimegalai *et al.* [8] explored chromatic computation in engineering systems. These studies underscore the practical relevance of chromatic theory in emerging technological contexts.

Despite these extensive contributions, several research gaps remain evident. First, there is a lack of unified frameworks that integrate classical chromatic theory with modern generalized coloring paradigms. Second, many algorithmic studies focus on empirical performance without rigorous theoretical guarantees across diverse graph classes. Third, scalability and adaptability of coloring algorithms for dynamic and evolving graphs remain underexplored. Finally, while applications are increasingly emphasized, theoretical insights derived from application-driven constraints are rarely fed back into core chromatic theory.

Addressing these gaps requires a holistic approach that synthesizes theoretical rigor, algorithmic innovation, and application awareness. The present study contributes to this objective by offering a structured synthesis of recent

literature, identifying unresolved challenges, and laying the foundation for future research directions in colorability and chromatic number theory.

3. Mathematical Modeling of Colorability and Chromatic Number

Graph coloring problems are naturally formulated within a rigorous mathematical framework that combines combinatorics, optimization theory, and discrete mathematics. Let $G = (V, E)$ be a finite, simple, undirected graph, where $V = \{v_1, v_2, \dots, v_n\}$ denotes the vertex set and $E \subseteq V \times V$ represents the edge set. A *proper vertex coloring* of G is a function

$$c: V \rightarrow \{1, 2, \dots, k\}$$

such that

$$c(u) \neq c(v), \quad \forall (u, v) \in E.$$

The smallest integer k for which such a mapping exists is defined as the *chromatic number* of the graph and is denoted by

$$\chi(G) = \min\{k \mid \exists c: V \rightarrow \{1, \dots, k\} \text{ satisfying proper coloring constraints}\}.$$

3.1 Constraint-Based Optimization Formulation

The chromatic number problem can be modeled as an integer optimization problem. Introduce binary decision variables

$$x_{v,i} = \begin{cases} 1, & \text{if vertex } v \text{ is assigned color } i, \\ 0, & \text{otherwise.} \end{cases}$$

The coloring constraints can then be expressed as:

1. Unique color assignment constraint

$$\sum_{i=1}^k x_{v,i} = 1, \quad \forall v \in V.$$

2. Adjacency constraint

$$x_{u,i} + x_{v,i} \leq 1, \quad \forall (u, v) \in E, \quad \forall i \in \{1, \dots, k\}.$$

3. Binary restriction

$$x_{v,i} \in \{0, 1\}, \quad \forall v \in V, \quad \forall i.$$

The optimization objective is to minimize the number of colors used:

$$\min k.$$

This formulation clearly illustrates why the chromatic number problem is NP-hard: it is a combinatorial optimization problem with exponentially many feasible assignments.

3.2 Graph Structural Bounds

The chromatic number is bounded by fundamental graph parameters. For any graph G ,

$$\omega(G) \leq \chi(G) \leq \Delta(G) + 1,$$

where $\omega(G)$ denotes the clique number and $\Delta(G)$ is the maximum vertex degree. Brooks' Theorem refines the upper bound for connected graphs that are neither complete nor odd cycles:

$$\chi(G) \leq \Delta(G).$$

Lower bounds may also be derived using independence numbers. If $\alpha(G)$ is the size of a maximum independent set, then

$$\chi(G) \geq \frac{|V|}{\alpha(G)}.$$

3.3 Probabilistic and Expected Chromatic Models

For random graphs $G(n, p)$, the chromatic number becomes a random variable. Let $\chi(G(n, p))$ denote the chromatic number of a graph with n vertices where edges exist independently with probability p . Asymptotically, it can be shown that

$$\chi(G(n, p)) \sim \frac{n}{2\log_b n}, \quad \text{where } b = \frac{1}{1-p}.$$

Recurrence-based models further refine these estimates by defining:

$$\mathbb{E}[\chi_{n+1}] = \mathbb{E}[\chi_n] + f(n, p),$$

where $f(n, p)$ captures the expected incremental chromatic cost of adding a vertex under probability p .

3.4 Generalized Chromatic Parameters

Beyond classical coloring, several extensions require modified mathematical formulations.

Distance-2 coloring requires:

$$c(u) \neq c(v), \quad \forall d(u, v) \leq 2,$$

where $d(u, v)$ denotes the shortest path distance.

Locating coloring introduces a color code vector:

$$\text{code}(v) = (d(v, C_1), d(v, C_2), \dots, d(v, C_k)),$$

where C_i is the set of vertices assigned color i . A coloring is locating if all vertices have distinct codes.

Fair and tolerant colorings incorporate inequality constraints:

$$|C_i| \leq \lambda |C_j|, \quad \forall i, j,$$

for some fairness constant $\lambda \geq 1$.

These formulations significantly increase modeling complexity and necessitate new analytical tools.

4. Algorithmic Frameworks, Comparative Analysis, and Applications

The intractability of exact chromatic number computation has motivated the development of diverse algorithmic strategies. These approaches vary in mathematical foundation, computational complexity, and application suitability.

4.1 Greedy and Heuristic Algorithms

The greedy coloring algorithm assigns colors sequentially according to a vertex ordering $\pi = (v_1, v_2, \dots, v_n)$. The color assignment rule is:

$$c(v_i) = \min\{k \mid k \notin \{c(u) \mid u \in N(v_i)\}\},$$

where $N(v_i)$ denotes the neighborhood of v_i .

The number of colors produced satisfies:

$$\chi(G) \leq \chi_{\text{greedy}}(G) \leq \Delta(G) + 1.$$

Ordering heuristics based on degree, centrality, or saturation (DSATUR) significantly improve empirical performance.

4.2 Stochastic and Metaheuristic Models

Monte Carlo coloring models define an energy function:

$$E(c) = \sum_{(u,v) \in E} \delta(c(u), c(v)),$$

where δ is the Kronecker delta. The goal is to minimize $E(c)$ using probabilistic transitions:

$$P(c \rightarrow c') = \exp\left(-\frac{E(c') - E(c)}{T}\right),$$

where T is a temperature parameter.

4.3 Comparative Algorithmic Analysis

Table 1 presents a comparative summary of major coloring approaches.

Table 1: Comparative Analysis of Graph Coloring Algorithms

Algorithm Type	Mathematical Basis	Complexity	Color Optimality	Scalability
Greedy Coloring	Sequential minimization	$\$O($	V	+
DSATUR	Saturation degree ordering	$\$O($	V	$^2\$$
Monte Carlo	Probabilistic energy minimization	Variable	High	High
Centrality-based	Graph metrics optimization	$\$O($	V	$\backslash \log$

4.4 Application-Oriented Chromatic Modeling

In frequency assignment problems, vertices represent transmitters and edges indicate interference. The coloring constraint ensures:

$$|f(u) - f(v)| \geq \delta, \quad \forall (u, v) \in E,$$

leading to *channel separation colorings*.

In scheduling applications, chromatic number corresponds to minimum time slots:

$$\text{Minimize } T = \chi(G),$$

where tasks sharing resources are adjacent.

Table 2 summarizes key applications.

Table 2: Applications of Chromatic Number in Real-World Systems

Application Domain	Graph Representation	Chromatic Interpretation
Scheduling	Tasks as vertices	Minimum time slots
Wireless Networks	Transmitters as vertices	Frequency allocation
Compiler Design	Variables as vertices	Register allocation

Application Domain	Graph Representation	Chromatic Interpretation
Blockchain Networks	Nodes as vertices	Conflict-free communication

4.5 Mathematical Performance Metrics

Algorithm performance is often evaluated using approximation ratios:

$$\rho = \frac{\chi_{\text{alg}}(G)}{\chi(G)},$$

and expected deviation:

$$\mathbb{E}[\chi_{\text{alg}} - \chi(G)].$$

These metrics provide theoretical insight into trade-offs between optimality and efficiency.

5. Discussion, Critical Analysis, and Open Problems

The preceding sections have demonstrated that colorability and chromatic number are not merely classical graph invariants but dynamic constructs that continue to evolve in response to theoretical advancements and application-driven demands. This section critically synthesizes the mathematical models, algorithmic frameworks, and application contexts discussed earlier, with particular emphasis on interpretative insights, limitations of existing approaches, and unresolved problems that define the current research frontier.

5.1 Interpretation of Mathematical Models

The integer programming formulation of the chromatic number problem, as presented in Section 3, provides a rigorous and unifying mathematical framework. However, despite its formal elegance, the formulation suffers from exponential growth in decision variables:

$$\text{Number of variables} = |V| \times k,$$

which renders exact optimization infeasible for large graphs. This highlights a fundamental tension between theoretical optimality and computational practicality. Relaxations of the binary constraints to continuous domains,

$$x_{v,i} \in [0,1],$$

lead to fractional colorings and linear programming bounds, but such relaxations often lack direct interpretability in practical settings. The integrality gap,

$$\gamma = \frac{\chi(G)}{\chi_f(G)},$$

where $\chi_f(G)$ denotes the fractional chromatic number, remains large for many graph classes, indicating the inherent difficulty of bridging exact and approximate solutions.

Probabilistic models of chromatic number, particularly in random graphs $G(n, p)$, offer asymptotic insight but provide limited guarantees for finite or structured graphs encountered in applications. While expected-value formulations such as

$$\mathbb{E}[\chi(G(n, p))] \approx \frac{n}{2\log_b n}$$

are mathematically elegant, they often fail to capture local structural irregularities, such as high-degree hubs or clustered subgraphs, which significantly influence coloring behavior in real-world networks.

5.2 Algorithmic Trade-offs and Limitations

Greedy and heuristic algorithms exhibit favorable time complexity and scalability, yet their performance is heavily dependent on vertex ordering. Formally, for a given ordering π ,

$$\chi_{\text{greedy}}(G, \pi) \leq \Delta(G) + 1,$$

but there exists an ordering π^* such that

$$\chi_{\text{greedy}}(G, \pi^*) = \chi(G).$$

Identifying or approximating such optimal orderings remains an open challenge. Centrality-based heuristics and saturation strategies reduce empirical error but lack worst-case approximation guarantees.

Stochastic and metaheuristic approaches, including Monte Carlo and simulated annealing methods, demonstrate superior solution quality for dense or irregular graphs. However, their convergence behavior is often sensitive to parameter selection. The probability of escaping local minima,

$$P_{\text{escape}} = \exp\left(-\frac{\Delta E}{T}\right),$$

depends critically on the cooling schedule $T(t)$, for which no universally optimal strategy exists. This lack of determinism complicates reproducibility and theoretical analysis.

5.3 Generalized Colorings: Conceptual and Practical Challenges

Generalized coloring paradigms, such as locating, distance-based, fair, and tolerant colorings, significantly enhance modeling fidelity. However, they introduce additional layers of complexity. For instance, locating colorings require injectivity of distance vectors:

$$\text{code}(u) \neq \text{code}(v), \quad \forall u \neq v,$$

which implicitly enforces global constraints that are difficult to verify algorithmically. Similarly, fairness constraints impose inequalities of the form

$$||C_i| - |C_j|| \leq \epsilon,$$

which transform coloring into a multi-objective optimization problem. The absence of unified theoretical bounds for these generalized parameters represents a major gap in current literature.

5.4 Open Problems and Research Challenges

Despite extensive study, several fundamental problems remain unresolved:

1. **Unified Theory:** There is no comprehensive theoretical framework that simultaneously accommodates classical and generalized chromatic parameters.
2. **Dynamic Graphs:** Most coloring models assume static graphs, whereas many real systems evolve over time. Let $G_t = (V_t, E_t)$ denote a time-dependent graph. Efficiently updating $\chi(G_t)$ under vertex or edge insertions remains largely unexplored.
3. **Approximation Guarantees:** Establishing tighter bounds on approximation ratios,

$$\rho = \sup_G \frac{\chi_{\text{alg}}(G)}{\chi(G)},$$

for modern heuristics is an open theoretical challenge.

4. **Scalability vs. Optimality:** Bridging the gap between polynomial-time algorithms and near-optimal colorings for large graphs remains a central unresolved issue.

These challenges collectively motivate continued research at the intersection of combinatorics, optimization, and applied graph theory.

6. Specific Outcome and Future Research Directions

This paper has presented a comprehensive and mathematically rigorous examination of colorability and chromatic number within graph theory, emphasizing their theoretical foundations, algorithmic realizations, and practical significance. Beginning with formal definitions and constraint-based models, the study has demonstrated that the chromatic number encapsulates a complex interplay between graph structure, computational complexity, and optimization theory.

The mathematical modeling section established that chromatic number determination is inherently NP-hard, as evidenced by its integer programming formulation and exponential solution space. Subsequent analysis of structural bounds and probabilistic models highlighted both the power and limitations of existing theoretical tools. Algorithmic discussions revealed that while exact solutions are infeasible for large graphs, heuristic and stochastic approaches offer practical alternatives with acceptable performance trade-offs.

A central conclusion of this study is that graph coloring has evolved beyond a single-parameter problem into a family of interrelated optimization challenges. Generalized colorings, including distance-based and fairness-aware models, reflect the increasing complexity of real-world systems. However, this evolution has outpaced theoretical unification, resulting in fragmented research efforts and isolated solution strategies.

6.1 Implications for Theory and Practice

From a theoretical perspective, the chromatic number remains a fertile ground for advancing combinatorial mathematics. New invariants, tighter bounds, and structural characterizations have the potential to deepen understanding of graph complexity. Practically, chromatic modeling continues to inform critical applications in scheduling, communication networks, compiler optimization, and distributed systems, where efficient resource allocation is paramount.

The relationship between chromatic parameters and application constraints can be formally expressed as:

$$\text{Optimal system performance} \Leftrightarrow \min \chi_{\text{constraint}}(G),$$

where $\chi_{\text{constraint}}(G)$ denotes an application-specific chromatic measure.

6.2 Future Research Directions

Future research should focus on several promising directions:

4. **Dynamic and Online Coloring:** Developing algorithms for graphs that evolve over time, with provable update bounds.
5. **Hybrid Models:** Integrating deterministic heuristics with stochastic optimization to balance scalability and solution quality.
6. **Unified Generalized Frameworks:** Establishing theoretical foundations that encompass multiple chromatic variants within a single mathematical model.
7. **Application-Driven Theory:** Using real-world constraints to inspire new chromatic invariants and bounds.

In conclusion, colorability and chromatic number remain central to both the theory and application of graph theory. Their continued study is essential not only for resolving long-standing mathematical questions but also for

addressing emerging challenges in complex, interconnected systems. The depth, adaptability, and relevance of chromatic theory ensure its enduring importance in modern mathematical and computational research.

Conclusion

This paper has provided a comprehensive and rigorous examination of colorability and the chromatic number as central constructs in graph theory, highlighting their enduring theoretical significance and expanding practical relevance. By integrating classical foundations with modern mathematical modeling, algorithmic strategies, and application-oriented perspectives, the study demonstrates that graph coloring is not a static or purely abstract problem but a dynamic and evolving field shaped by computational complexity and real-world constraints. The analysis underscores that while the chromatic number remains inherently difficult to compute exactly, advances in generalized coloring models, heuristics, and probabilistic approaches have significantly enhanced its applicability to contemporary problems in scheduling, networks, and optimization. Overall, the paper reinforces the view that continued research into colorability and chromatic parameters—particularly through unified theoretical frameworks and scalable algorithms—is essential for advancing both the mathematical depth and practical utility of graph theory.

References

- [1] Selvaraj, A. Soumy Syamchand. The Investigator, Vol.3, No.4 (December 2017) ISSN 2454-3314
- [2] Syamchand, S., & Selvaraj, A. (2018). THE MASKED REALITY IN JOHN BARTH'S THE FLOATING OPERA. Journal of English Language and Literature-JOELL, 5(1), 252-255.
- [3] Syamchand, S., & Selvaraj, A. SOCIAL REALITY IN TERMS OF COLOUR IN NELLA LARSEN'S QUICKSAND. SHANLAX INTERNATIONAL JOURNAL OF ENGLISH, 82.
- [4] Syamchand, S., & Selvaraj, A. IN BETWEEN ABSURDITY AND IDENTITY: A CRITICAL EXPEDITION TO JOHN BARTH" S "LOST IN FUN HOUSE". CENTRE FOR RESOURCE, RESEARCH & PUBLICATION SER ICES (CRRPS) www. crrps. in, 106.
- [5] S. Kumar, "Multi-Modal Healthcare Dataset for AI-Based Early Disease Risk Prediction," IEEE Dataport, 2025, doi: 10.21227/p1q8-sd47
- [6] S. Kumar, "FedGenCDSS Dataset For Federated Generative AI in Clinical Decision Support," IEEE Dataport, Jul. 2025, doi: 10.21227/dwh7-df06
- [7] S. Kumar, "Edge-AI Sensor Dataset for Real-Time Fault Prediction in Smart Manufacturing," IEEE Dataport, Jun. 2025, doi: 10.21227/s9yg-fv18
- [8] S. Kumar, "A Generative AI-Powered Digital Twin for Adaptive NASH Care," Commun. ACM, Aug. 27, 2025, doi: 10.1145/3743154
- [9] S. Kumar, "AI-Driven System and Machine Learning Models for Cardiovascular Disease Diagnostics, Readmission Risk Assessment, and Survival Prediction," Indian Patent Application 202511107057, filed Nov. 5, 2025, published Dec. 26, 2025. [Online]. Available: <https://iprsearch.ipindia.gov.in/PublicSearch>
- [10] S. Kumar, "Multimodal Generative AI Framework for Therapeutic Decision Support in Autism Spectrum Disorder," in Proc. 2025 IEEE 16th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 309–315, Oct. 2025, DOI: 10.1109/UEMCON67449.2025.11267611.
- [11] S. Kumar, "Radiomics-Driven AI for Adipose Tissue Characterization: Towards Explainable Biomarkers of Cardiometabolic Risk in Abdominal MRI," in Proc. 2025 IEEE 16th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 827–833, Oct. 2025, DOI: 10.1109/UEMCON67449.2025.11267685.
- [12] S. Kumar, "Generative Artificial Intelligence for Liver Disease Diagnosis from Clinical and Imaging Data," in Proc. 2025 IEEE 16th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 581–587, Oct. 2025, DOI: 10.1109/UEMCON67449.2025.11267677.

[13] S. Kumar, "Generative AI-Driven Classification of Alzheimer's Disease Using Hybrid Transformer Architectures," 2025 IEEE International Symposium on Technology and Society (ISTAS), pp. 1–6, Sep. 2025, doi: 10.1109/istas65609.2025.11269635.

[14] S. Kumar, "GenAI Integration in Clinical Decision Support Systems: Towards Responsible and Scalable AI in Healthcare," 2025 IEEE International Symposium on Technology and Society (ISTAS), pp. 1–7, Sep. 2025, doi: 10.1109/istas65609.2025.11269649.

[15] S. Kumar, P. Muthukumar, S. S. Mernuri, R. R. Raja, Z. A. Salam, and N. S. Bode, "GPT-Powered Virtual Assistants for Intelligent Cloud Service Management," 2025 IEEE Smart Conference on Artificial Intelligence and Sciences (SmartAIS), Honolulu, HI, USA, Oct. 2025, doi: 10.1109/SmartAIS61256.2025.11198967

[16] S. Kumar, A. Bhattacharjee, R. Y. S. Pradhan, M. Sridharan, H. K. Verma, and Z. A. Alam, "Future of Human-AI Interaction: Bridging the Gap with LLMs and AR Integration," 2025 IEEE Smart Conference on Artificial Intelligence and Sciences (SmartAIS), Indore, India, Oct. 2025, doi: 10.1109/SmartAIS61256.2025.11199115

[17] S. Kumar, M. Patel, B. B. Jayasingh, M. Kumar, Z. Balasm, and S. Bansal, "Fuzzy Logic-Driven Intelligent System for Uncertainty-Aware Decision Support Using Heterogeneous Data," *J. Mach. Comput.*, vol. 5, no. 4, 2025, doi: 10.53759/7669/jmc202505205

[18] S. Kumar, R. V. S. Praveen, R. Aida, N. Varshney, Z. Alsalam, and N. S. Boob, "Enhancing AI Decision-Making with Explainable Large Language Models (LLMs) in Critical Applications," 2025 IEEE International Conference on Advances in Computing Research On Science Engineering and Technology (ACROSET), pp. 1–6, Sep. 2025, doi: 10.1109/acroset66531.2025.11280656.

[19] S. Kumar, A. K. Rambhatla, R. Aida, M. I. Habelalmateen, A. Badhoutiya, and N. S. Boob, "Federated Learning in IoT Secure and Scalable AI for Edge Devices," 2025 IEEE International Conference on Advances in Computing Research On Science Engineering and Technology (ACROSET), pp. 1–6, Sep. 2025, doi: 10.1109/acroset66531.2025.11280741.

[20] S. Kumar, "A Transformer-Enhanced Generative AI Framework for Lung Tumor Segmentation and Prognosis Prediction," *J. Neonatal Surg.*, vol. 13, no. 1, pp. 1569–1583, Jan. 2024. [Online]. Available: <https://jneonatalsurg.com/index.php/jns/article/view/9460>

[21] S. Kumar, "Adaptive Graph-LLM Fusion for Context-Aware Risk Assessment in Smart Industrial Networks," *Frontiers in Health Informatics*, 2024. [Online]. Available: <https://healthinformaticsjournal.com/index.php/IJMI/article/view/2813>

[22] S. Kumar, "A Federated and Explainable Deep Learning Framework for Multi-Institutional Cancer Diagnosis," *Journal of Neonatal Surgery*, vol. 12, no. 1, pp. 119–135, Aug. 2023. [Online]. Available: <https://jneonatalsurg.com/index.php/jns/article/view/9461>

[23] S. Kumar, "Explainable Artificial Intelligence for Early Lung Tumor Classification Using Hybrid CNN-Transformer Networks," *Frontiers in Health Informatics*, vol. 12, pp. 484–504, 2023. [Online]. Available: <https://healthinformaticsjournal.com/downloads/files/2023-484.pdf>

[24] S. Kumar, "A Large Language Model Framework for Intelligent Insurance Claim Automation and Fraud Detection," *Journal of Computational Analysis and Applications*, vol. 32, no. 5, pp. 1023–1034, May 2024. [Online]. Available: <https://www.eudoxuspress.com/index.php/pub/article/view/3950>

[25] S. Kumar, "Generative AI in the Categorisation of Paediatric Pneumonia on Chest Radiographs," *Int. J. Curr. Sci. Res. Rev.*, vol. 8, no. 2, pp. 712–717, Feb. 2025, doi: 10.47191/ijcsrr/V8-i2-16

[26] S. Kumar, "Generative AI Model for Chemotherapy-Induced Myelosuppression in Children," *Int. Res. J. Modern. Eng. Technol. Sci.*, vol. 7, no. 2, pp. 969–975, Feb. 2025, doi: 10.56726/IRJMETS67323

[27] S. Kumar, "Behavioral Therapies Using Generative AI and NLP for Substance Abuse Treatment and Recovery," *Int. Res. J. Modern. Eng. Technol. Sci.*, vol. 7, no. 1, pp. 4153–4162, Jan. 2025, doi: 10.56726/IRJMETS66672

[28] S. Kumar, "Early Detection of Depression and Anxiety in the USA Using Generative AI," *Int. J. Res. Eng.*, vol. 7, pp. 1–7, Jan. 2025, doi: 10.33545/26648776.2025.v7.i1a.65

[29] NAYAN GOEL, CLOUD SECURITY CHALLENGES AND BEST PRACTICES, *Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ Journal of Tianjin University Science and Technology*, Vol: 57 Issue: 06: 2024, 571-583, DOI: 10.5281/zenodo.17163793

[30] NAYAN GOEL, NANDAN GUPTA, ZERO-TRUST AI SECURITY: INTEGRATING AI INTO ZERO-TRUST ARCHITECTURES, *Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ Journal of Tianjin University Science and Technology*, Vol: 57 Issue: 10:2024, 158-173, DOI: 10.5281/zenodo.17149652

[31] Sridhar, Dr. Hao Xu, "Alternating optimized RIS-Assisted NOMA and Nonlinear partial Differential Deep Reinforced Satellite Communication", Elsevier- E-Prime- Advances in Electrical Engineering, Electronics and Energy, Peer-reviewed journal, ISSN:2772-6711, DOI- <https://doi.org/10.1016/j.prime.2024.100619>, 29th may, 2024.

[32] Varadala Sridhar, Dr. S. Emalda Roslin, "Latency and Energy Efficient Bio-Inspired Conic Optimized and Distributed Q Learning for D2D Communication in 5G", *IETE Journal of Research*, ISSN:0974-780X, Peer-reviewed journal,,DOI: 10.1080/03772063.2021.1906768 , 2021, Page No: 1-13, Taylor and Francis

[33] V. Sridhar, K.V. Ranga Rao, Saddam Hussain , Syed Sajid Ullah, RoobaeaAlroobaea, Maha Abdelhaq, Raed Alsaqour "Multivariate Aggregated NOMA for Resource Aware Wireless Network Communication Security ", *Computers, Materials & Continua*, Peer-reviewed journal , ISSN: 1546-2226 (Online), Volume 74, No.1, 2023, Page No: 1694-1708, <https://doi.org/10.32604/cmc.2023.028129>, TechSciencePress

[34] Varadala Sridhar, et al "Bagging Ensemble mean-shift Gaussian kernelized clustering based D2D connectivity enabled communication for 5G networks", Elsevier-E-Prime-Advances in Electrical Engineering, Electronics and Energy, Peer-reviewed journal, ISSN:2772-6711, DOI- <https://doi.org/10.1016/j.prime.2023.100400>, 20 Dec, 2023.

[35] Varadala Sridhar, Dr. S. Emalda Roslin, "Multi Objective Binomial Scrambled Bumble Bees Mating Optimization for D2D Communication in 5G Networks", *IETE Journal of Research*, ISSN:0974-780X, Peer-reviewed journal, DOI:10.1080/03772063.2023.2264248 ,2023, Page No: 1-10, Taylor and Francis.

[36] Varadala Sridhar, et al, "Jarvis-Patrick-Clusterative African Buffalo Optimized DeepLearning Classifier for Device-to-Device Communication in 5G Networks", *IETE Journal of Research*, Peer-reviewed journal, ISSN:0974-780X, DOI: <https://doi.org/10.1080/03772063.2023.2273946> ,Nov 2023, Page No: 1-10, Taylor and Francis

[37] V. Sridhar, K.V. RangaRao, V. Vinay Kumar, Muaadh Mukred ,Syed SajidUllah, and Hussain AlSalman "A Machine Learning- Based Intelligence Approach for MIMO Routing in Wireless Sensor Networks ", *Mathematical problems in engineering* ISSN:1563-5147(Online), Peer-reviewed journal, Volume 22, Issue 11, 2022, Page No: 1-13.<https://doi.org/10.1155/2022/6391678>

[38] Varadala Sridhar, Dr .S. Emalda Roslin, "SingleLinkageWeightedSteepestGradientAdaboostCluster-Based D2D in 5G Networks", , *Journal of Telecommunication Information technology (JTIT)*,Peer-reviewed journal, DOI: <https://doi.org/10.26636/jtit.2023.167222>, March (2023)

[39] D. Dinesh, S. G, M. I. Habelalmateen, P. C. D. Kalaivaani, C. Venkatesh and A. Shrivastava, "Artificial Intelligent based Self Driving Cars for the Senior Citizens," *2025 7th International Conference on Inventive*

Material Science and Applications (ICIMA), Namakkal, India, 2025, pp. 1469-1473, doi: 10.1109/ICIMA64861.2025.11073845.

[40] S. Hundekari, R. Praveen, A. Shrivastava, R. R. Hwsein, S. Bansal and L. Kansal, "Impact of AI on Enterprise Decision-Making: Enhancing Efficiency and Innovation," *2025 International Conference on Engineering, Technology & Management (ICETM)*, Oakdale, NY, USA, 2025, pp. 1-5, doi: 10.1109/ICETM63734.2025.11051526

[41] R. Praveen, A. Shrivastava, G. Sharma, A. M. Shakir, M. Gupta and S. S. S. R. G. Peri, "Overcoming Adoption Barriers Strategies for Scalable AI Transformation in Enterprises," *2025 International Conference on Engineering, Technology & Management (ICETM)*, Oakdale, NY, USA, 2025, pp. 1-6, doi: 10.1109/ICETM63734.2025.11051446.

[42] A. Shrivastava, R. Praveen, B. Gangadhar, H. K. Vemuri, S. Rasool and R. R. Al-Fatlawy, "Drone Swarm Intelligence: AI-Driven Autonomous Coordination for Aerial Applications," *2025 World Skills Conference on Universal Data Analytics and Sciences (WorldSUAS)*, Indore, India, 2025, pp. 1-6, doi: 10.1109/WorldSUAS66815.2025.11199241.

[43] V. Nutalapati, R. Aida, S. S. Vemuri, N. Al Said, A. M. Shakir and A. Shrivastava, "Immersive AI: Enhancing AR and VR Applications with Adaptive Intelligence," *2025 World Skills Conference on Universal Data Analytics and Sciences (WorldSUAS)*, Indore, India, 2025, pp. 1-6, doi: 10.1109/WorldSUAS66815.2025.11199210.

[44] A. Shrivastava, S. Bhadula, R. Kumar, G. Kaliyaperumal, B. D. Rao and A. Jain, "AI in Medical Imaging: Enhancing Diagnostic Accuracy with Deep Convolutional Networks," *2025 International Conference on Computational, Communication and Information Technology (ICCCIT)*, Indore, India, 2025, pp. 542-547, doi: 10.1109/ICCCIT62592.2025.10927771.

[45] Artificial Neural Networks for Independent Cyberattack Classification," *2025 2nd International Conference On Multidisciplinary Research and Innovations in Engineering (MRIE)*, Gurugram, India, 2025, pp. 572-576, doi: 10.1109/MRIE66930.2025.11156728.

[46] Prem Kumar Sholapurapu. (2025). AI-Driven Financial Forecasting: Enhancing Predictive Accuracy in Volatile Markets. *European Economic Letters (EEL)*, 15(2), 1282-1291. <https://doi.org/10.52783/eel.v15i2.2955>

[47] S. Jain, P. K. Sholapurapu, B. Sharma, M. Nagar, N. Bhatt and N. Swaroopa, "Hybrid Encryption Approach for Securing Educational Data Using Attribute-Based Methods," *2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0*, Raigarh, India, 2025, pp. 1-6, doi: 10.1109/OTCON65728.2025.11070667.

[48] P. Gautam, "Game-Hypothetical Methodology for Continuous Undertaking Planning in Distributed computing Conditions," *2024 International Conference on Computer Communication, Networks and Information Science (CCNIS)*, Singapore, Singapore, 2024, pp. 92-97, doi: 10.1109/CCNIS64984.2024.00018.

[49] P. Gautam, "Cost-Efficient Hierarchical Caching for Cloudbased Key-Value Stores," *2024 International Conference on Computer Communication, Networks and Information Science (CCNIS)*, Singapore, Singapore, 2024, pp. 165-178, doi: 10.1109/CCNIS64984.2024.00019.

[50] K. Shekhar and S. Dour, "Epileptic Seizure Detection based on LSTM Model using Noisy EEG Signals," *2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA)*, Coimbatore, India, 2021, pp. 292-296, doi: 10.1109/ICECA52323.2021.9675941.

[51] S. J. Patel, S. D. Degadwala and K. S. Shekhar, "A survey on multi light source shadow detection techniques," *2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIIECS)*, Coimbatore, India, 2017, pp. 1-4, doi: 10.1109/ICIIIECS.2017.8275984.

[52] M. Nagar, P. K. Sholapurapu, D. P. Kaur, A. Lathigara, D. Amulya and R. S. Panda, "A Hybrid Machine Learning Framework for Cognitive Load Detection Using Single Lead EEG, CiSSA and Nature-Inspired

Feature Selection," 2025 World Skills Conference on Universal Data Analytics and Sciences (WorldSUAS), Indore, India, 2025, pp. 1-6, doi: 10.1109/WorldSUAS66815.2025.11199069P

[53] Soumy Syamchand, D. S. C., & Mathew, S. Guardians of the Forest: The Cholanaiykan Tribe's Living Heritage in the Southern Western Ghats. Integrated Journal for Research in Arts and Humanities ISSN (Online): 2583-1712 Volume-5 Issue-6 || November 2025 || PP. 61-67 <https://doi.org/10.55544/ijrah.5.6.11>

[54] Syamchand, S., & Selvaraj, A. In the Name of Feminism: A Reading of Margaret Atwood's The Handmaid's Tale. University Grants Commission, New Delhi Recognized Journal No. 41311 ISSN: Print: 2347-5021 www.research-chronicler.com ISSN: Online: 2347-503X

[55] Syamchand, S., & Selvaraj, A. Imperialization of Female Body through Sexual Encroachment: An Analysis of Arnold Itwaru's Shanti. Language in India www.languageinindia.com, ISSN 1930-2940 18:3 March 2018

[56] Syamchand, S., & Selvaraj, A. (2018). THE MASKED REALITY IN JOHN BARTH'S THE FLOATING OPERA. *Journal of English Language and Literature-JOELL*, 5(1), 252-255.

[57] Mukesh Patidar, Anurag Shrivastava, Shahajan Miah, Yogendra Kumar, Arun Kumar Sivaraman, An energy efficient high-speed quantum-dot based full adder design and parity gate for nano application, Materials Today: Proceedings, Volume 62, Part 7, 2022, Pages 4880-4890, ISSN 2214-7853, <https://doi.org/10.1016/j.matpr.2022.03.532>.

[58] Bikash Chandra Saha, Anurag Shrivastava, Sanjiv Kumar Jain, Prateek Nigam, S Hemavathi, On-Grid solar microgrid temperature monitoring and assessment in real time, Materials Today: Proceedings, Volume 62, Part 7, 2022, Pages 5013-5020, ISSN 2214-7853, <https://doi.org/10.1016/j.matpr.2022.04.896>.

[59] Mohit Chandra Saxena, Firdouse Banu, Anurag Shrivastava, M. Thyagaraj, Shrikant Upadhyay, Comprehensive analysis of energy efficient secure routing protocol over sensor network, Materials Today: Proceedings, Volume 62, Part 7, 2022, Pages 5003-5007, ISSN 2214-7853, <https://doi.org/10.1016/j.matpr.2022.04.857>.

[60] A. Rana, A. Reddy, A. Shrivastava, D. Verma, M. S. Ansari and D. Singh, "Secure and Smart Healthcare System using IoT and Deep Learning Models," 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 2022, pp. 915-922, doi: 10.1109/ICTACS56270.2022.9988676.

[61] Syamchand, Soumy, Santhosha C, and Saji Mathew. "Echoes from Neruthimala: Oral Myths and Ritual Traditions of the Bettakkuruma of Wayanad." LangLit, vol. 12, no. 1, Aug. 2025, pp. 345-364. ISSN 2349-5189.

[62] Syamchand, Soumy, Santhosha C., and Saji Mathew. "Guardians of the Forest: The Cholanaiykan Tribe's Living Heritage in the Southern Western Ghats." Integrated Journal for Research in Arts and Humanities, vol. 5, no. 6, Nov. 2025, pp. 61-67. <https://doi.org/10.55544/ijrah.5.6.11>.

[63] Syamchand, Soumy, Saji Mathew, and Santhosha C. "Eating with the Earth: Traditional Dietary Practices of the Malapandaram Tribes during Puberty, Pregnancy, and Lactation." Stallion Journal for Multidisciplinary Associated Research Studies, vol. 4, no. 5, Oct. 2025, pp. 83-86. <https://doi.org/10.55544/sjmars.4.5.12>.

[64] Syamchand, Soumy, et al. "From Purity Codes to Patriarchal Constraints: Cultural Taboos and Biological Misconception about Menstruations." International Journal of Innovative Research in Management, Engineering and Technology, vol. 10, no. 10, Oct. 2025, pp. 226-234. ISSN 2456-0448.

[65] Syamchand, Soumy, Saji Mathew, and Santhosha C. "Interweaving Faith and Healing: An Ethnographic Inquiry into the Shamanic and Ethnomedical Practices of the Kattunayakan Tribe in Kerala." Dr.M.G.R Journal of Health Sciences, vol. 3, no. 3, 2024, pp. 1-9. ISSN 2583-5513.