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ABSTRACT

One of the leading causes of blindness worldwide is diabetic retinopathy (DR), the most common diabetic eye
disease. Retinal image classification by hand is currently a laborious procedure that calls for specific knowledge. In
this paper, we looked into the possibility of automating this task using convolutional neural networks (CNNs). A
number of potent deep learning models, such as InceptionV3, ResNet50, ResNet50V2 and DenseNet201, were
chosen. We used data augmentation to prevent overfitting and increase the resilience of the models. Two stages
comprised our training strategy: a first round of feature extraction using a custom classifier, and a fine-tuning step
where we unfroze several layers to make the models better fit our data.

We tested our approach on the PubMed, Messidor, and kaggle diabetic retinopathy dataset and discovered that it
worked quite well. With a remarkable accuracy of 94.51%, the improved InceptionV3 model was the most notable.

KEYWORDS
Diabetic Retinopathy, InceptionV3, Resnet50, Resnet50V2, Densenet201, Feature extraction, Fine-tuning,
Convolutional Neural Network.

1. Introduction

Around the world, one of the main causes of vision loss and blindness [1] is eye illnesses that impact the fundus, the
back of the eye. Among the most prevalent of these are diabetic retinopathy (DR), cataracts, and age-related macular
degeneration (AMD). Many of these illnesses currently have no known cure, and when they advance to later stages,
they can significantly impair vision.

Diabetic retinopathy is a serious issue. As diabetes affects a large number of people worldwide, DR has emerged as
one of its most common side effects. It's a cunning illness that frequently doesn't cause any symptoms at first but can
eventually cause blindness by slowly destroying the blood vessels in the retina. It is indeed one of the top four
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causes of blindness [2, 31] in the world. In clinical settings, fundus scans are used by physicians to diagnose and
track DR, a disorder that affects hundreds of millions of people [3]. Because of this, combating DR is of utmost
importance and calls for a trifecta of biomedical research, legislative actions, and technological technology.

DR has becoming the most common cause of blindness in many Western nations as population’s age. Timely
treatment and early detection are essential for preventing severe vision loss. Without it, vision can quickly and
permanently decline. Artificial intelligence (Al) has promising answers for this problem. Al can help physicians by
using vast amounts of medical data to provide effective tools for early diagnosis and detection, particularly in
primary care settings. Working together, Al and ophthalmologists could greatly enhance patient treatment for the
increasing number of individuals suffering from fundus illnesses [4].

A branch of artificial intelligence called deep learning has demonstrated impressive success in numerous domains
due to its capacity to extract intricate patterns from data. In particular, deep convolutional neural networks, or
CNNs, have demonstrated remarkable performance in image categorization tasks [5,28]. Medicine greatly benefits
from the ability to adapt a model trained on a big dataset for different tasks using techniques like transfer learning.
CNN application to fundus images, however, presents a unique set of difficulties. Since a single retinal image may
exhibit symptoms of several different diseases in the real world, multi-label classification is a more realistic yet
challenging issue. It is also challenging together big, high-quality datasets, particularly for rarer illnesses. A
significant challenge is building a trustworthy model from start when dealing with sparse and occasionally noisy
data.

In order to address these problems, we created a multi-phase training plan. Initial feature extraction [6] and fine-
tuning [7] are two potent deep learning approaches that are combined in this method. To get over the restrictions of
smaller, more specialized medical datasets, the main concept is to reuse knowledge from larger datasets. By
methodically enhancing a number of models, we essentially create a powerful, precise diagnostic tool. To help with
the diagnosis of DR, we created and assessed four different deep learning frameworks in this study.

2 Related Works

2.1 Traditional Approaches
Computer-aided diagnosis was the gold standard for automated eye disease detection until the deep learning
revolution [29,30]. These systems successfully divided the diagnosis procedure into parts that resembled those of a
clinician: they segmented lesions [8] to isolate important areas, preprocessed images to enhance quality, extracted
significant features from those areas, and then used machine learning to classify the disease [9].

2.2 Deep Learning Methods
A lot of progress has been made in using deep learning to identify diabetic retinopathy (DR). Key milestones have
been identified by research from top universities. The turning point came in 2016 when a Google research team
released a study in JAMA showing that a deep neural network could accurately find DR in fundus images, just like a
real eye doctor. Soon after, researchers from Stanford University published work in Ophthalmology that showed
even more promise for Al in ophthalmology and got a lot of media notice [10].
Since these early discoveries, study has grown to include many more complex methods that aim to make things
more accurate and useful. Dealing with the problem of not having enough information has been a main theme. A lot
of researchers have been able to successfully use transfer learning [11], which involves changing powerful models
that have already been trained, such as InceptionV3 [12], ResNet50 [13] , ResNet50V2 [14] and DenseNet201 [15]
to do the specific job of DR classification. With this method, you can get good results even with smaller samples.
Advanced data augmentation, color normalization, and methods like synthetic minority over-sampling to deal with
class imbalance are some other ways to deal with a lack of data [16].
Another important trend is the creation of neural network designs that are getting more complicated and specialized.
Researchers are making custom answers instead of using standard models [17]. Some people have come up with
hybrid models that combine the best parts of different designs [18], while others have made completely new
networks, such as AC-DenseNet201 [19], which uses attention and dense connectivity to improve feature extraction
and work better on rotated images. Groups of models have also been shown to work well for getting high accuracy
in public datasets such as Messidor, PubMed, and Kaggle
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The effects are really great. Accuracy rates for multi-class classification (finding the different steps of DR) have
been steadily rising. Many studies have reported accuracy rates above 90%, and some have even reported results
above 98% or 99% on certain datasets. Not only are these models tested for accuracy, but also for important clinical
metrics such as sensitivity (recall), specificity, and F1-score, which are necessary for a diagnostic tool to be
dependable [20].

In short, early methods depended on features that were engineered by hand. Today's deep learning is powerful
because it can automatically learn complex features from images [21]. The field has gone from proving that the idea
is possible to improving models for greater accuracy, robustness, and clinical usefulness [22]. This shows a huge
amount of promise for automating early diagnosis and making healthcare systems less busy.

3 Proposed Method

A novel approach to diabetic retinopathy (DR) detection and classification utilizing deep learning algorithms based
on actual eye scans is investigated in this paper. We have a three-stage process. We started by gathering fundus
pictures to use as a dataset. A total of four deep learning models were subsequently trained using this dataset:
InceptionV3, DenseNet201, ResNet50, and ResNet5S0V2. Finally, we ran tests on all of the models to determine
which one worked best in each scenario. In this part, we will go over each of these steps in depth. In Figure 1 we can
see the whole procedure.

Preprocessing Data Data Augmentation

Training The Classification
Algorithms

(N

InceptionV3

ResNet50

ResNet50V2

DenseNet201

Retinal Images

Choose the best
Classification
NozDiabetic algorithms
Retinopathy Moderate-Diabe

Retinopathy Retinopathy

Proliferative
Diabetic Retinopathy

TR 2

'

T Abnormal Vessels
Mild-Diabetic Proliterative
Retinopathy Diabetic Retinopathy

Figure 1: The following describes our suggested process.
31 Dataset
We used a set of real-life retina pictures to train our models. Each image had already been given a clinical severity
score  for diabetic  retinopathy (DR) on the standard ICDR scale from 0 to 4.
Our dataset [23] was built on top of a public set of 3,662 photos on different datasets. We did a careful cleaning
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process, though, to make sure that our results were accurate. We got rid of entries that were already there and
pictures that were too noisy or broken to be useful. This made a refined dataset of 2,631 high-quality images that we
used for all training and tests that came after. As you look at Figure 2, you can see cases from each severity class.

Prohferative
Diabetic Retinopanyy

g

Abnormal Vestels

Proliferative DR

No-DR Moderate-DDR eV

Figure 2: The progression of diabetic retinopathy

3.2 Data Pre-Processing
We were required to go through a number of preparation processes in order to have our dataset ready for the deep
learning models. This portion of the document provides a step-by-step guide to the procedure, beginning with the
handling of the raw data and continuing through the application of augmentation techniques.
The original pictures of the retina are quite huge in size, with proportions of 2,896 by 1,944 pixels. Nevertheless, we
were confronted with a frequent problem in real-world data: a considerable imbalance in the number of samples in
each class. There are a significantly greater number of "No-DR" photos than "Severe" cases, as is demonstrated in
Figure 3. Because the photographs included in the dataset were gathered from a variety of clinics over a period of
time and were taken with a number of different cameras, it comes as no surprise that the collection also included its
fair share of noise, which refers to images that were blurry, overexposed, or excessively dark.
The standardization of the photographs was the first thing that we did. Every single one of them was transformed
into RGB color channels. After that, we centered a circular crop on the image and then applied it in order to
concentrate on the retina itself. The black corners were effectively removed by this process, while the circular field
of view, which was of utmost importance, was maintained.
We adjusted the size of all photos to 224x224 pixels in order to make training more efficient. We were able to utilize
a bigger batch size of 64, which sped up the training process, because of this smaller, consistent size.
In order to increase the resilience of our model, we made use of data augmentation. We discovered that when the
photos were zoomed in, certain light patches could be misconstrued by the model, as seen in Figure 4. The
possibility of overfitting is significantly reduced by the model's ability to concentrate on the genuine indicators of
illness. This ability is made possible by the model's use of augmentation techniques such as random zooming,
flipping, and rotation, which enable it learn to disregard these changes that are not relevant.

Summary of the dataset's classification

Figure 3: Summary of the dataset's classifications
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Figure 4: The image on the right presents a magnified perspective

33 Data Augmentation

We employed a number of augmentation approaches to increase the versatility of our dataset and aid in the model's
improved generalization. We trained our algorithm on an updated dataset to distinguish retinas in different
situations. Camera angles and difficult lighting were simulated by randomly zooming, flipping, rotating, and
adjusting contrast Figure 5. Also, we found a way to remove the irritating black borders around circular retina scans.

DATASETS PREVIEW

Figure 5: Overview of the data augmentation methodologies utilized

Initially, we clipped out the black borders automatically. A technique known as "polar unrolling," which turns the
circular image into a rectangular strip, was then employed. We discovered that this unrolling procedure decreased
the requirement for additional rotation augmentations because it in itself produces a new perspective on the image.

4 Training of the Selected Algorithms

Transfer learning was smarter than constructing an Al model from scratch, a major challenge in medical Al. Our
unique diabetic retinopathy diagnosis method starts with a model that recognizes broad images and carefully adjusts
it to recognize disease symptoms.

4.1 Approach and Adopted Models

We selected four of the most recent image recognition models for our investigation: InceptionV3, ResNet50
ResNet50V2, and DenseNet201. According to a recent assessment by [24], these are some of the most widely
utilized and practical designs in the sector today. Our objective was to determine the most accurate approach for
diagnosing diabetic retinopathy, irrespective of the underlying model architecture, by testing this heterogeneous
population.
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Each model's training phase began with weights it had learned from the enormous ImageNet database. The benefit
of this "pre-training" is enormous, despite the fact that our own retinal scan dataset is far smaller. This pre-training
equips the models with a foundational comprehension of prevalent visual patterns. Although a retina scan differs
significantly from typical images in ImageNet, this basic information facilitates the models' ability to recognize the
unique indicators of diabetic retinopathy more rapidly and efficiently

4.1.1. InceptionV3

Over a million photos were used to teach InceptionV3, a powerful image recognition model, to recognize 1,000
different kinds of objects. You send it a 299x299 pixel picture to use it, and it tells you what it thinks the picture
shows.

Its smart design uses "Inception" modules, which look at a picture at many sizes at once for patterns. This system
also uses "skip connections," which are like shortcuts that let data flow easily through all 48 of its layers. That fixes
a typical issue in deep networks, which lets the model learn faster and do better. Figure 6 displays how all of these
parts fit together.
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Figure 6: InceptionV3 architecture

4.1.2. ResNet50
The 224x224-pixel standard color picture that ResNet50 is meant to look at is what it actually does. The number
"50" in its name might make you think it's a smaller model, but it's actually quite powerful and complicated. It has
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fifty layers and an astonishing 138 million parameters, which makes it a big network even in today's world. Sorting
photos into one thousand separate groups was the original purpose of its training.

The fact that ResNet50 has such an incredibly simple design is what makes it so effective. The architecture is based
on a fairly logical pattern: convolutional layers are always followed by pooling layers, which gradually lower the
size of the image.

There is a clear and regular evolution in the number of filters that it employs to "look" at the data, beginning with 64
and then systematically doubling until it reaches 128, then 256, and eventually 512 in the deepest sections of the
network. As a result of this structured increase, it is able to learn features that are ever more complicated. Figure 7
provides a visual representation of this simplified design that you can observe for yourself.

2 @iooks —

Figure 7: ResNet50 architecture

4.1.3. ResNet50V2
ResNet50V2 presents a more methodical approach to augmenting a neural network. Rather than indiscriminately
augmenting a network's depth, breadth, or input resolution—which might be speculative—ResNet50V2
proportionately and systematically enhances all three dimensions.

Instead of stacking rooms, it's like adding a clever extension to a house. Making the network deeper, wider, and able
to see finer details is coordinated. This collaboration between components produces a more effective and superior
model.
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Figure 8: ResNet50V2 architecture

4.1.4. DenseNet201

DenseNet201, represented a significant advancement in CNN architecture due to its "dense" connectedness. In
contrast to conventional models, where a layer communicates solely with the subsequent layer, DenseNet201 allows
each layer to accept input from all preceding layers.

Envision a team in which each member possesses access to the entirety of work completed by all other members up
to that moment. This framework facilitates an exceptionally efficient information flow. A primary benefit is that the
network is not need to re-acquire identical characteristics, hence considerably diminishing the parameter count and
streamlining the overall architecture. The particular DenseNet201 architecture employed in our research is
illustrated in Figure 9.
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Figure 9: DenseNet201 architecture
4.2 Experimental Setup and Training

Our training strategy was divided into two primary stages. All four types were initially regarded as pre-made feature
extractors. After that was finished, we proceeded to the fine-tuning phase, where we modified each model separately
to improve accuracy.

4.3 First Stage: Feature Extraction

During this first stage, we aim to utilize the knowledge that is already there in our pre-trained models. Consider it
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like looking at our new data through the eyes of an expert; we maintain their focus and sharpness by freezing their
fundamental layers (the "convolutional base"). A specialized feature extractor is created from this basis.

We build a new brain—a unique classifier that we train from scratch—on top of this expert base. As a result, the
model may learn our particular task without changing its broad understanding. Compared to training an entire
model, this is far faster.

To down sample the features and make the data easier to handle, a 5x5 average pooling layer is used first. Next
comes a dropout layer (set at 20%) that improves the model's generalization by reducing its reliance on any one
feature. Then comes a batch normalization layer to expedite training and guarantee steady data flow. Lastly, the
output layer's Softmax activation function provides our last predictions. This whole configuration is depicted in
Figure 10.

8 Base Model e
\
Retinal Images L ¢ J
L J

Freeze early layers in Moderate-DR

Proliferative

network T Diabetié Retinpathy

Added classifier head ks,

Abnormal Vessels

Proliferative-DR

Severe DR

Figure 10: First training stage: Features extraction

4.4 Second Stage: Fine-Tuning

We simply trained a new classifier on top of the pre-trained model in our first experiment, leaving it locked.
Consider it similar to following the recipes of a skilled chef without altering them.

We're fine-tuning now to go one step farther. To allow them to learn and adjust, we're releasing the final few layers
of the original model. The model can improve its current knowledge to meet our particular requirements by training
these layers in conjunction with our new classifier. The chef seems to be modifying their traditional recipes to make
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them ideal for the ingredients we have. This whole configuration is depicted in Figure 11.
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Figure 11: Second training stage: Fine-tuning

4.4.1 Experimental Setup
We utilized TensorFlow 2.1 [25] and its integrated Keras [26] API to construct and train our deep learning models
[27]. Our trials were conducted on a Google Colab Pro account, which supplied us with 100 GB of RAM, P100 and
T4 GPUs, and all code was written in Python [28]. We trained all of the models using 224x224 pixel pictures and a
cross-entropy loss function using the Adam optimizer. Two stages of training were conducted: Feature extraction:
25 epochs of training were conducted with a learning rate of 1.00e-3.
For the fine-tuning step, we kept training for 25 more epochs while reducing the learning rate to 1.00e-5. The term
"epoch" refers to the number of times a training image is shown to the model.
Based on the size of the model and the memory available in our GPU, we modified the batch size, which is the
number of photos processed simultaneously, for each model. In Table 1 you can see a summary of all the model
details, such as the number of layers and when fine-tuning started.
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Model Name  Training Stage Learning Stage Number  Fine- Batch Size
Stage 1 Stage 2 Stage 1 Stage 2 of total tuning

layers in start at

base layer

model number:
InceptionV3 25 25 1.00e-03  1.00e-05 780 100 64
ResNet50 25 25 1.00e-03  1.00e-03 19 3 64
ResNet50V2 25 25 1.00e-03  1.00e-05 22 4 64
DenseNet201 23 27 1.00e-03  1.00e-05 427 50 64

Table 1: Parameters in the multi stage training stage

4.4.2  Training Output
Training and validation accuracy and loss for all four models are shown in Figure 12
After a few training rounds, all models learnt quickly and performed well. Accuracy was 72%—77% during initial
feature extraction. We improved performance by fine-tuning, achieving 90% to 95% accuracy. Lost values fell to a
stable level.

DenseNet201 ResNet50

Vahdaton Accuracy Trainmg and Vahdabon Accuracy

InceptionV3 ResNet50V2
Figure 12: Training results

The models performed equally well on the validation set as they did on the training data, indicating no overfitting.
Several aspects must be considered. These models must be tested with diverse retinal pictures and patient
populations. It wasn't overfitting here, but more diverse data could cause it. Testing these models on external
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datasets in clinical situations would give us confidence.

Table 2 shows all four models surpassed 90% accuracy after training. Real test is still to come. High scores are
promising, but their value depends on the unknown test set. A model with good training data but inadequate test data
is overfit and unsuitable for real-world use.

Model Overall Accuracy Overall Loss
InceptionV3 0.94 0.15
ResNet50 0.91 0.33
ResNet50V2 0.92 0.20
DenseNet201 0.93 0.31
Table 2: Overall accuracy and loss resulting from the training
5 Evaluations and Discussion

The outcomes of the training phase are discussed in this section. Next, in order to assess the suggested methods, we
talk about the results.

5.1 Performance Evaluation and Metrics
We utilized four main metrics—accuracy, precision, recall, and the F1 score—to fully assess our suggested
algorithms. Even though accuracy gives us a general idea of how right something is, we put more weight on
precision and recall because they have direct clinical consequences.
Precision counts how trustworthy the model is when it marks a case as "No-DR." A model that isn't very accurate
would mistakenly warn too many healthy people that they might have the disease. Important professional resources
are being wasted, and patients are being made anxious for no reason.
In contrast, memory (or sensitivity) is very important for the stages of disease (Mild, Moderate, Severe, and
Proliferate DR). Testing how well the model can find all real events. A low recall is a more serious failure because it
means the model misses people who do have diabetic retinopathy, which could mean they don't get the life-saving
treatment they need.

To find the best model for properly identifying each class, we can use the F1 score, which takes these two concerns
into account. Using standard methods, we found these metrics:

True Positive + True Negative

Accuracy =
Y True Positive + True Negative + False Positive + False Negative

True Positive

Precision =
True Positive + False Negative

True Positive

Recall =
True Positive + False Negative

Precision * Recall
F1 Score = 2 *

Precision + Recall

5.2 Experimental Results

The performance of the four models is presented in Figures 13 and Figure 14 and the results are promising. Most
models demonstrated exceptional performance.

Analysis of the confusion matrices (Figures 13-14) indicates that nearly all models attained a perfect score of 100%
across the four stages of diabetic retinopathy. For the critical task of differentiating between a "Disease" and "No-
Disease"  scenario, three of the four models attained a perfect accuracy of 100%.
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We trained and tested all four algorithms on a dataset comprising 2,631 retinal images, employing an 80/10/10 split
for training, validation, and testing, respectively. Figure 15 illustrates the very encouraging results. At 94.51%,
InceptionV3 had the highest overall accuracy, followed closely by DenseNet201 at 93.20%.

More significantly, they all performed almost flawlessly on the three main clinical parameters of recall, accuracy,
and F1-score.

Evaluation Metrics of the Four Algorithms on the

Test Set

1.02

1

0.98

0.96

0.94

0.92

(i)

.58

.86

0.84

.52

ncaptiony'3 Reznat5d Resn=t30WI Densebat20l
M socuracy M Precizion [ Recall Fl-Score

Figure 15: Evaluation Metrics of the four algorithms on the test set

For example, almost every model achieved a precision of 1.00. This is a significant practical advantage: we can be
extremely certain that the model is accurate when it provides a "No-DR" diagnosis. This effectively allocates
resources and, equally important, keeps healthy patients from experiencing needless stress.

Recall, or the model's capacity to identify each and every instance of the illness, is the most important statistic in this
context. Remarkably, our best models, DenseNet201 and InceptionV3, obtained a flawless recall of 1.00. Significant
medical implications result from this: there is almost no chance of inadvertently assuring a patient with DR that they
are "safe." This guarantees that nearly all patients are discovered and able to get the necessary treatment to save their
sight in a timely manner.

In conclusion, DenseNet201 and InceptionV3 both demonstrate remarkable efficacy in this challenge. They show
great promise for practical clinical use since it is impossible to miss even a single case due to their exceptional
accuracy, perfect recall, and precision.

6 Discussions
Our great results came from a well-thought-out process in which each step was very important. We started by
carefully getting the retinal pictures ready. The choice to get rid of duplicate images from the original dataset was a
big one. These cuts down on the overall number of photos, but they greatly improved the model's performance by
getting rid of bias. To be able to extend to new images, the model had to learn the real features of diabetic
retinopathy instead of remembering specific visual artifacts. Additionally, we used random rotations and made all of
the  pictures  the same size (224x224  pixels) to avoid  overfitting even  more.
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Within the classification job itself, we chose four well-known image recognition neural networks: InceptionV3,
ResNet50, ResNet50V2, and DenseNet201. It was different for each one because we added a new top layer with
average pooling, batch normalization, a dropout layer for regularization, and a SoftMax layer for classification.
The results were very positive. All models were very accurate, with accuracy levels above 90%. The models that did
the best on the test set were InceptionV3 and DenseNet201, which both got 100% to remember things. This is a very
important accomplishment for a medical application because it means that the models properly identified all cases of
diabetic retinopathy, lowering the frightening risk of false negatives.
Leading the group with a test accuracy of 94.51%, InceptionV3 was closely followed by DenseNet201, which
scored 93.20%. Additionally, the other models also showed impressive efficiency. These outcomes are very good,
especially when compared to earlier published methods that usually recorded accuracy levels between 79.50% and
87.04%.

Looking ahead, we know that accuracy alone isn't the only thing that matters for clinical use in the real world.
Deployment depends on a lot of different factors, all of which are important. To fully understand each model's
strengths and weaknesses, the next step will be to do a more detailed test on a variety of datasets.
Excellent work is expected in the future. To improve their performance, we're going to train our models on bigger
and more varied clinical samples and use advanced optimization methods. Additionally, we see a chance to use deep
learning segmentation techniques to find the exact parts of the retina that are damaged by the disease. This could
help us figure out how bad it is. Lastly, this diagnostic system could be changed to find other eye diseases like
glaucoma or age-related macular degeneration. This would make it possible for a full Al-assisted ophthalmology
platform to function.

7 Conclusions

We created a method in this study that uses pictures of the human retina to automatically identify the phases of
diabetic retinopathy. Our strategy was based on sophisticated deep learning networks that we trained in a special
two-step procedure after customizing them. This approach builds a final classifier that is more accurate and
dependable by first tailoring the models to our particular goal and then fine-tuning them.

The outcomes are self-explanatory. Our approach continuously produced excellent results. Although all of our
classifiers demonstrated remarkable accuracy, our top models—InceptionV3, ResNet50, and DenseNet201—
achieved a flawless 100% recall, which is more significant. This indicates that every single instance of diabetic
retinopathy was effectively detected by the system throughout our tests. Missing an actual case can have major
health effects, therefore this is a critical accomplishment for a medical tool.

We think our method has a lot of promise to be a useful tool for medical professionals, allowing for quicker and
more accurate diabetic retinopathy detection. It might improve medical outcomes by streamlining patient triage and
cutting down on needless referrals to specialists if  widely used in clinics.
Notwithstanding the great potential of these results, we acknowledge the study's limits and identify a number of
fascinating avenues for further research to expand on this work
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