
Climate Change, Health Outcomes, and Economics Implications: A Case Study of Madurai

R. Prakash*, Dr. K. Jeyanthi**

*Reg No: F10224, Ph.D Full Time Research Scholar, PG & Research Department of Economics, Thiagarajar College,

Madurai Kamarajar University, Palkalai Nagar.

**Assistant Professor of Economics, PG & Research Department of Economics, Thiagarajar College, Madurai-09.

Abstract

Climate change remains one of the greatest concerns at a global scale, profoundly influencing local economies and public health outcomes. This research specifically analyzes Madurai, focusing on the complex relationships between changing climate patterns—such as temperature rise, unpredictable rainfall, and humidity shifts—and their direct health and economic effects. Drawing on household survey data and secondary climate records, the study evaluates immediate and long-term health risks such as heat stress, respiratory disorders, diseases spread by vectors, and dehydration. These health problems significantly increase household financial burdens, contributing to higher medical expenditures, reduced earning potential, and fewer opportunities for income generation.

Introduction

The environment is made up of a network of interconnected ecosystems, each existing in a fragile web of relationships. Nature continually tries to keep a balance among these ecosystems, but human interventions have increasingly influenced the environment's quality. Pollution is now seen as a transformation in the physical, chemical, and biological characteristics of natural assets like air, water, and soil. Besides issues like deforestation and natural disasters, pollution stands out as a critical environmental challenge. Human production and consumption both leave a mark on the health of natural systems. In recent years, agriculture has adopted advanced technologies, collectively referred to as the Green Revolution. This includes the introduction of high-yield crop varieties, improved irrigation, effective management practices, hybrid seeds, and the use of synthetic fertilizers and pesticides. While these approaches have boosted food production, they have also led to environmental issues such as diffuse source pollution, soil erosion, and declining soil

fertility. Multiple studies have explained the environmental impacts tied to modern agriculture. (Edwards, 1989; Biswas, 1994; NAAS, 2005; Singh, 2000; Pimentel, 1996; Kumar et al., 1999).

Sustainable agriculture has now become a global priority. Farmers have increasingly turned to technology-driven practices to meet the rising demand for food and fiber, particularly with population growth in India. The surge in agricultural productivity through new techniques has not been uniform, however, due to varying levels of awareness about the responsible use of such technologies. Many farmers lack complete knowledge of their environmental consequences. Therefore, understanding farmers' awareness and perceptions about the environmental challenges posed by these techniques is crucial for planning long-term sustainable agriculture. This study aims to evaluate farmer awareness and attitudes, and to identify the primary factors shaping their views on environmental concerns and sustainable farming.

Research Methodology

Keeping in view of the objectives, the study will adopt Multi-Stage random sampling produce for the selection of the District, Talks, Blocks and Wards. This study will be conducted in the Madurai district of Tamil Nadu. It is situated in the southern part of the Tamil Nadu.

Selection of Sample Respondents

Madurai district of Tamil Nadu has Three Revenue Divisions., Eleven Taluks and Thirteen Blocks. In Madurai district, Madurai city has been selected for the observe vicinity. There are 4 zones and 100 wards within the district, out of the 100 wards, two wards from each region have been selected based on population.

I have determined the sample wards based on the criteria of highest population from each and lowest population from each region. In 4 zones, I have designed a model that looks at the most and least populated places by selected two wards from each. I have selected a total of eight wards and created a focus area in them. From each area, 0.25 percent of the sample responses were collected, bringing the total number of respondents within focus area to 387. This shape the scale of sample respondents within the look at area.

The table 1 reveals that climate change is not just an environmental issue but also a human health crisis. Heat stress, heart failure, and deaths are not just statistics, but reflect the

vulnerability of society, showing that workers, the elderly, and those with limited medical care are most affected during heat waves.

Asthma and heart diseases caused by air pollution reduce the quality of life of patients and increase medical dependence. Similarly, mosquito-borne diseases such as malaria, dengue, and chikungunya reveal the daily struggles of people living in flood-prone areas. Water-borne diseases such as cholera and leptospirosis reveal the state of unclean drinking water.

Malnutrition and diarrhea caused by food shortages severely affect vulnerable groups such as children, women, and poor households. In addition, harmful algal bloom events pose a direct challenge to food security and water resources.

Furthermore, people who lose their homes, livelihoods, and relatives experience psychological impacts such as stress, anxiety, and depression. While such mental health challenges are not reflected in statistics, they affect social stability and well-being.

Thus, the numbers in the table reflect real human experiences – the fatigue of working in extreme heat, the fear of disease outbreaks after floods, hunger caused by food shortages, depression caused by recurring climate disasters, etc. Therefore, the impact of climate change is not just on physical health, but also deeply affects the dignity, security, and peace of mind of human beings.

This data reveals the full spectrum of climate impacts, physical, social and psychological. The human stories behind these percentages speak of pain, adaptation and often isolation. Addressing climate change is not just about infrastructure or health systems; it is about compassionately supporting mental health, restoring hope and strengthening social resilience.

Table 1

Socio Economic Status on Sample Respondent Study in the Area

Indicators	Clusters/groping	Sample of respondents	Percentage	Characters variables
Age Group	Less than 20	82	21.19	Middle-aged workers
	20-35	156	40.31	Elderly / experienced
	35-50	108	27.91	No formal education
	Above 50	41	10.59	Basic schooling
Educational	Illiterate	116	29.97	Moderate education

Level	Primary Education	31	8.01	Better educated
	High School	62	16.02	Formal secure jobs
	Higher Secondary	178	45.99	Private sector workers
	Government Employee	77	19.90	Independent earners
Occupational Status	Private employee	155	40.05	Daily wage workers
	Self employee	83	21.45	Low income group
	Casual Laborer	72	18.60	Moderate income group
	Below 8000	88	22.74	High income group
Monthly Income	8,000-15,000	197	50.90	Middle-aged workers
	Above 15,000	102	26.36	Elderly / experienced

Source: Collected for filed survey report.

When viewed from a humanistic angle, these tables highlight the need to prioritize dignity, psychosocial support, and meaningful social and policy actions—affirming that the climate crisis impacts thoughts and emotions as deeply as physical bodies and the natural world. The categories in Table 2 are not mere statistics; each represents groups of individuals, families, and communities dealing with those challenges.

Heat stress (25.32%) contributes to fatigue and dehydration in people facing high temperatures, impacting their daily life and work. Cardiovascular issues (30.75%, 57.36%) are elevated due to heatwaves or air pollution, with older adults and those already suffering from heart conditions at increased risk. Accidents (19.90%) arise from extreme weather events like floods and storms, causing physical trauma. Fatalities (24.03%) leave families grieving in their wake.

Asthma (42.64%) remains a widespread struggle as air pollution worsens respiratory health. Malaria (20.16%), dengue (42.64%), and chikungunya (37.21%) afflict rural and mountain populations, from children to adults, leading to illness, economic hardship, and educational disruptions. Waterborne diseases such as cholera (37.21%) and leptospirosis (62.79%) thrive in polluted rural areas, especially after floods. Malnutrition (37.47%) follows crop failures and food shortages, weakening the immunity of young and old. Diarrhoea (35.92%) is often linked to the lack of clean food and water. Algal blooms (26.61%) harm both people and animals as temperature rises.

Past disasters, economic uncertainty, and family difficulties result in psychological effects: anxiety (13.44%), post-traumatic stress (18.60%), stress (22.74%), depression (22.74%), and despair (22.48%). Every statistic reflects the agony, mental struggle, and erosion of community safety.

In regions like Madurai, these challenges surface through daily disruptions—disturbed sleep, rising expenses, interrupted schooling, and constant anxiety regarding future climate extremes. The data reveal both resilience and vulnerability, underscoring the necessity for robust community support, targeted health interventions, and climate-conscious policies for adaptation and well-being amidst environmental change.

Table 2

Health impacts on climate change variable in study in the area

Indicators	Clusters/grouping	Sample of respondents	Percentage	Typical characteristics
Weather Related Health Effects	Heat Stress	98	25.32	Direct exposure to high temperature causes exhaustion and dehydration.
	Cardiovascular failure	119	30.75	Extreme heat triggers heart-related complications in vulnerable groups.
	Injuries	77	19.90	Weather disasters (floods, storms, heat) result in physical injuries.
	Fatalities	93	24.03	Climate extremes (heat waves, floods) lead to mortality cases.
Air Pollution Disease	Asthma	165	42.64	Increased air pollutants aggravate respiratory distress.

Vector-borne Disease	Cardiovascular	222	57.36	Long-term exposure to pollution causes chronic heart diseases.
	Malaria	78	20.16	Spread by mosquitoes in stagnant water after rainfall.
Water-Borne Disease	Dengue	165	42.64	Rapid urbanization and rainfall increase mosquito breeding.
	Chikengunia	144	37.21	Seasonal outbreak linked to monsoon and warm climate.
Water-Borne Disease	Cholera	144	37.21	Contaminated water during floods causes diarrheal outbreaks.
	Leprosy	243	62.79	Spread through floodwater exposure; highest risk factor.
Water and Food Supply	Malnutrition	145	37.47	Food insecurity and crop failure reduce nutritional intake.
	Diarrhoea	139	35.92	Unsafe drinking water leads to gastrointestinal illness.
Psycho-Social Impacts	Harmful Algabooms	103	26.61	Rising temperatures cause toxic algae, affecting water supply.
	Anxiety	52	13.44	Climate uncertainty increases mental stress
	Post-traumatic	72	18.60	Trauma from disasters (floods, droughts) causes

Stress	88	22.74	long-term stress. Economic losses and climate shocks increase tension.
Depression	88	22.74	Long-term livelihood insecurity leads to depressive disorders.
Despair	87	22.48	Feelings of hopelessness due to recurring climate risks.

Source: Collected for filed survey report.

This table 3 provides a comparative analysis of the average maximum and minimum temperatures over ten years in Madurai district, along with their annual variations. Interpreting this data through a humanistic perspective reveals the profound impact these temperature changes have on the lives, livelihoods and overall well-being of the people.

The numbers in this table are not just statistical records; they point to the living reality of individuals and communities who must adapt to changing temperatures and increasingly unpredictable weather conditions.

Maximum temperature rise (up to 39.6°C): Every year, when maximum temperatures rise above 38°C, outdoor workers, agricultural workers and vulnerable populations are forced to endure extreme heat. This can lead to heat-related illnesses, reduced productivity and economic losses, especially for those whose jobs depend on stable climatic conditions.

Changes in minimum temperatures (up to 18.9°C): Fluctuations in night-time temperatures affect people's comfort, energy use and health - especially for children and the elderly, whose bodies are most affected by sudden changes.

Annual variation (9.5°C to 18.3°C): Large temperature ranges are signs of climate instability. Such instability puts greater stress on crops, increases the need for climate adaptation in agriculture, and makes it more difficult to maintain traditional lifestyles. Climate instability can also increase psychosocial stress, as households worry about health, food security, and unpredictable weather patterns.

Since the text contains English only (no native script), no source-language phrase tags were needed in this case. If you want tagging in another language or dialect present in this

text, please specify. Otherwise, this formatting aligns with your instruction to tag native script blocks only.

Table 3

Comparative Analysis of Mean Maximum and Mean Minimum Temperatures in Madurai District (2011-12 to 2020-21)

(in Celsius)

Year	Mean Maximum Temperature	Mean Minimum Temperature	Variation
2011-12	35.5	18.9	16.6
2012-13	36.2	19.4	16.8
2013-14	35.3	24.8	10.5
2014-15	36.1	19.4	16.7
2015-16	36.2	19.4	16.8
2016-17	34.2	24.7	9.5
2017 -18	36.2	20.7	15.5
2018-19	39.6	21.3	18.3
2019-20	39.1	20.9	18.2
2020-21	39.4	21.6	17.8
Average Total	36.7	21.1	15.6

Source: Computed from Secondary Sources, India Meteorological Department, Chennai, 2021

The climatic changes in Madurai, including temperature fluctuations and rainfall variations, are having profound and tangible effects on daily life and livelihoods. People in Madurai experience altered sleep patterns, increased utility bills, disruptions in education, and ongoing anxieties about future climate extremes. This scenario underscores a dual reality of resilience and vulnerability, necessitating enhanced social support, targeted health interventions, and climate-conscious policies to help communities adapt and thrive despite environmental stressors.

Rainfall variations, ranging from lower-than-normal years causing water scarcity and agricultural challenges to higher-than-normal years leading to flooding and related

emergencies, directly impact farmers, families, and public health. These yearly swings in rainfall exacerbate economic stresses and mental health challenges, illustrating the interconnectedness of climate variability with human welfare.

Overall, Madurai's climate change severity is high, with negative trends in temperature, rainfall, and associated environmental factors increasing the urgency for comprehensive adaptation and mitigation strategies that protect vulnerable populations and sustain livelihoods in the face of an increasingly volatile climate.

Regarding your objective about source-language phrase tagging, since this text is entirely in English and contains no native script blocks, there are no phrases requiring ... tags per your specified rules.

This is a comprehensive summary based on current climate data and socio-environmental impacts observed in Madurai.

Table 4
Comparative Analysis on Normal – Actual Rainfall in The Study Area
(2011-12 to 2020-21)

(In mm)

Year	Rainfall		Variation
	Normal	Actual	
2011-12	69.4	97.9	-28.5
2012-13	69.4	69.2	0.2
2013-14	69.4	67.9	1.5
2014-15	61.5	90.0	-28.5
2015-16	60.0	81.4	-21.4
2016-17	60.0	56.7	3.3
2017 -18	60.0	72.1	-12.1
2018-19	60.0	92.3	-32.3
2019-20	56.1	75.5	-19.4
2020-21	54.3	74.1	-19.8

Average Total	62.0	77.7	-15.7
----------------------	------	------	-------

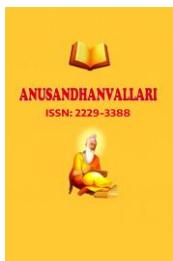
Source: Computed from secondary source& Meteorological Department, Chennai, 2021.

The rainfall data from 2011-12 to 2020-21 in the study area shows interesting variations. Over these years, the normal expected rainfall ranged from about 54.3 mm to 69.4 mm annually. However, the actual rainfall often exceeded these normal values, as seen in years like 2011-12 and 2018-19, where the rainfall was significantly higher by nearly 28.5 mm and 32.3 mm respectively. In contrast, there were years, such as 2016-17, where the actual rainfall was slightly less than normal by about 3.3 mm. On average, across the decade, the actual rainfall averaged 77.7 mm, which is 15.7 mm more than the normal average of 62.0 mm. This indicates a general trend of above-normal rainfall during this period, which could have important implications for agriculture, water availability, and local ecosystems. Such fluctuations underline the need for adaptive measures to manage water resources and support communities affected by these changes

Findings:

The analysis of climate data from Madurai district reveals significant variations in temperature and rainfall over the past decade. Maximum temperatures have risen, often exceeding 38°C, which places vulnerable groups such as outdoor workers and the elderly at risk of heat-related health issues. Night-time temperature fluctuations further impact comfort and health, especially among children and the elderly. Rainfall data show a general trend toward above-normal precipitation, with considerable year-to-year variability, leading to both water scarcity in some years and flooding in others. These climatic changes have direct repercussions on agriculture, public health, and socioeconomic stability in the region. The varying rainfall and temperature patterns increase the difficulties rural communities face, including crop stress, water resource management challenges, and psychosocial stress related to economic uncertainties and health risks.

Conclusion:


The findings underscore the urgent need for climate adaptation strategies tailored to local realities in Madurai. Strengthening healthcare infrastructure and social support systems can mitigate the health impacts of rising temperatures and changing rainfall patterns. Furthermore, promoting climate-resilient agricultural practices and efficient water management is critical to sustaining livelihoods. Policies must be responsive, grounded in community needs, and aimed at enhancing resilience among vulnerable populations.

Ultimately, addressing climate change's multifaceted impacts requires compassionate, human-centered approaches that balance environmental, economic, and social dimensions to foster sustainable wellbeing

References

1. An Economic Analysis of Climate Change in Dry Lands of Madurai District, Indian Journal of Environmental and Climate Change, 2023.
2. Climate Change Reports, Tamil Nadu State Climate Change Cell, 2022-23.
3. Economic Impact of Climate Change on Farmers' Income in Ramanathapuram District, ICAR Journal, 2020.
4. An Economic Analysis of Climate Change in Salem District of Tamil Nadu, The Pharma Journal, 2021.
5. Impact of Climate Change on Economic Growth in India, Working Paper, 2024.
6. Role of Climate Change & Challenges to Sustainable Tourism in Madurai, IJAMTES, 2023.
7. Ricardian Analysis of Climate Impact on Farmer Income in Tamil Nadu, Indian Journal of Agricultural Sciences, 2020.
8. Climate Change Severity Assessment for Madurai District, AQI India Report, 2024.
9. Study on Climate Change Adaptation in Peri-Urban Madurai and Coimbatore, IIT Madras, 2023-24.
10. Analysis of Weather and Agricultural Productivity Using Climate Models, Anna University, 2020.
11. Economic Costs of Climate Change Induced Health Issues in Tamil Nadu, Research Trend, 2024.
12. Health Outcomes and Climate Change Nexus: Madurai Case Study, Thiagarajar College Research Report, 2024.
13. Water Resource Management and Rainfall Variability in Tamil Nadu, TN Government Report, 2021.
14. Agricultural Productivity and Climate Change: Tamil Nadu Case, MSE Working Paper, 2024.
15. Socioeconomic Impacts of Climate Variability in Indian Districts, Journal of Regional Growth, 2023
16. Antle, J. M. and Pingali, P. L. Pesticides, productivity, and farmer health: A Philippine case study. *American J. of Agril. Econ.*, (1994) 76(3): 418-430.

Anusandhanvallari

Vol 2024 No.1

October 2024

ISSN 2229-3388

-
17. Berg, H. Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam—economic and ecological considerations. *Econ*, (2002) 41(1): 95-107.
 18. Biswas, M.R. Agriculture and environment: a review, 1972–1992. *Ambio*, (1994) 23 (3): 192–197.
 19. Edwards, C.A. “The importance of integration in sustainable agricultural systems”. In: Paoletti, M.G., Stinner, B.R., Lorenzoni, G.G. (Eds.). Agricultural Ecology and Environment. *Ecosyst. Environ.* (1989) 27: 25–35.