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Abstract: Partial discharge (PD) detection and source identification play a critical role in ensuring the reliability and 

longevity of high-voltage insulation systems. Accurate classification of PD sources enables timely maintenance 

decisions and reduces the risk of catastrophic equipment failures. This study presents a comparative analysis of two 

machine learning techniques—Self-Organizing Map (SOM) and K-Nearest Neighbour (KNN)—for effective PD 

source identification. PD patterns were extracted from experimental high-voltage test setups, and relevant statistical 

and waveform-based features were derived to train both models. The SOM, an unsupervised neural network, was 

employed to cluster PD signatures and visualize underlying data structures, while the KNN classifier, a supervised 

learning method, was used to categorize PD sources based on proximity in feature space. Performance evaluation was 

conducted using accuracy, clustering efficiency, computational complexity, and sensitivity to noise. Results indicate 

that KNN provides higher classification accuracy and faster convergence for well-labeled datasets, whereas SOM 

demonstrates superior capability in handling unlabeled data, revealing hidden patterns, and providing intuitive 

visualization of PD classes. This comparative study highlights the strengths and limitations of both algorithms and 

offers insights into selecting suitable methods for PD monitoring systems in power engineering applications.  
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1. Introduction 

High-voltage (HV) insulation systems are fundamental components in modern power networks, ensuring the safe and 

reliable operation of electrical equipment such as transformers, cables, switchgear, and rotating machines. Over the 

decades, the demand for stable and uninterrupted power supply has increased significantly, placing greater emphasis 

on maintaining the health and longevity of HV assets. One of the most critical indicators of insulation degradation is 

Partial Discharge (PD)—a localized dielectric breakdown of a small portion of the insulation material under high 

electric stress. While PD may not immediately result in equipment failure, its persistent occurrence accelerates 

insulation deterioration, ultimately leading to catastrophic breakdowns [1]. Consequently, the early detection, 

classification, and interpretation of PD activity have become essential practices in condition-based monitoring and 

predictive maintenance strategies across power systems. 

1.1 Importance of Partial Discharge (PD) Detection in High-Voltage Equipment 

Partial discharge detection serves as a powerful diagnostic tool in the assessment of insulation integrity. PD activities 

provide insights into the type, severity, and location of insulation defects. Each PD event carries unique electrical, 
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acoustic, or electromagnetic characteristics that reveal underlying deterioration mechanisms [2]. Identifying these 

characteristics early enables operators to plan maintenance activities, minimize unexpected outages, and extend 

equipment life. Furthermore, regulatory standards such as IEC 60270 emphasize standardized PD measurement 

techniques, highlighting the industry’s recognition of PD as a vital health indicator [3]. 

In transformers, PD may indicate voids in solid insulation or moisture contamination in oil-impregnated paper. In 

high-voltage cables, PD often originates from manufacturing defects, joint imperfections, or aging. Gas-insulated 

switchgear (GIS) commonly experiences PD due to metallic particles or insulation spacer defects. Regardless of the 

equipment type, the consequences of undetected PD can be financially and operationally severe, often resulting in 

equipment damage, fire hazards, or grid instability. Therefore, accurate PD detection is indispensable for ensuring 

reliability, safety, and efficiency in power networks [4]. 

1.2 Challenges in PD Source Identification 

Despite its importance, PD source identification poses considerable challenges. PD signals are typically weak, noisy, 

and highly variable depending on operational conditions. The presence of external disturbances, measurement noise, 

electromagnetic interference, and overlapping signals from multiple PD sources complicate accurate interpretation. 

Additionally, PD patterns can differ significantly across equipment types, defect types, and insulation materials, 

making manual classification difficult and error-prone [5]. 

Traditional diagnostic approaches rely heavily on human expertise and visual interpretation of phase-resolved partial 

discharge (PRPD) patterns, pulse waveforms, or frequency-domain characteristics. Although experienced engineers 

can distinguish common PD types such as internal discharge, corona, and surface discharge, subjective judgment 

introduces inconsistencies and limits scalability. Moreover, complex real-world conditions, especially in field 

environments, make it difficult to isolate PD sources from background noise or distinguish between multiple 

concurrent discharge types [6][7]. 

Another key challenge lies in the high dimensionality of PD data. Modern sensors and digital acquisition systems 

capture large amounts of information, including time, frequency, and phase characteristics. Extracting meaningful 

features from such multidimensional data requires sophisticated techniques. These limitations have motivated 

researchers to explore data-driven, automated, and repeatable approaches for PD analysis. 

1.3 Need for Machine Learning Techniques in PD Classification 

With the advancements in artificial intelligence and pattern recognition, ML has emerged as an effective tool for PD 

source classification. ML techniques offer the capability to analyze large datasets, extract complex patterns, and 

classify PD types with high accuracy. Unlike manual methods, ML-based approaches provide objective, data-driven 

insights and exhibit strong generalization ability when trained with representative datasets [8]. 

Machine learning enables the automation of defect identification, reducing human dependency and facilitating real-

time monitoring in substations or industrial plants. Feature extraction methods such as time-domain statistics, spectral 

descriptors, and PRPD-based parameters can be fed into ML models to distinguish PD types even under noisy 

conditions. As the power industry moves toward digital substations and smart grid infrastructure, integrating ML into 

PD diagnostic systems enhances the reliability and intelligence of asset management [9]. 

Among various ML techniques, Self-Organizing Maps (SOM) and K-Nearest Neighbour (KNN) have gained 

popularity due to their simplicity, interpretability, and effectiveness. SOM provides an unsupervised mechanism for 

clustering and visualizing high-dimensional PD data, while KNN offers a supervised classification method capable of 
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mapping new PD patterns based on similarity measures. The complementary nature of these methods makes their 

comparison highly relevant for identifying optimal PD diagnostic strategies [10]. 

1.4 Overview of SOM and KNN 

Self-Organizing Map (SOM), introduced by Kohonen, is a neural network model designed for unsupervised learning 

and dimensionality reduction. SOM transforms complex input data into a low-dimensional grid while preserving the 

topological relationships of the data. This property makes SOM highly effective in clustering PD patterns and 

visualizing hidden structures within the dataset. Its ability to group similar PD signals without predefined labels allows 

researchers to study underlying PD behavior and identify distinct clusters representing different defect types [11]. 

In PD analysis, SOM has been widely used to interpret PRPD patterns, extract representative clusters, and reveal the 

similarity among different PD sources. The model’s visualization tools, including U-matrices and component planes, 

enable engineers to understand data relationships intuitively. However, SOM relies heavily on appropriate parameter 

selection, such as learning rate and map size, and may struggle with highly overlapping classes [12][13]. 

K-Nearest Neighbour (KNN) is a simple yet powerful supervised classification algorithm. It assigns class labels based 

on the majority class among the k closest samples in the feature space. KNN’s non-parametric nature makes it flexible 

and easy to implement. In the context of PD classification, KNN can classify PD signals efficiently when provided 

with high-quality labeled training data. The algorithm’s performance depends on the choice of distance metric, value 

of k, and feature scaling. Its sensitivity to noise and high-dimensional data can pose challenges, although these can be 

mitigated with proper preprocessing techniques [14]. 

1.5 Objectives for Comparative Analysis 

The primary motivation for comparing SOM and KNN lies in understanding their strengths, limitations, and 

applicability to PD source identification. While SOM excels in clustering unlabeled PD data and discovering hidden 

structures, KNN provides a straightforward supervised approach suitable for well-labeled datasets. A comprehensive 

comparative analysis helps determine which method performs better under varying conditions such as noise levels, 

feature types, and PD source variability. 

This study aims to: 

• Evaluate the classification accuracy of SOM and KNN for different PD sources. 

• Analyze their computational efficiency and robustness to noise. 

• Investigate the interpretability offered by SOM’s visualization. 

• Provide insights into suitable method selection for practical PD monitoring systems. 

By comparing both algorithms using consistent datasets and feature sets, this research contributes to the development 

of reliable and intelligent PD diagnostic tools suitable for deployment in high-voltage environments. 

The paper is structured into key sections beginning with an introduction highlighting the importance of partial 

discharge (PD) detection and the motivation for comparing SOM and KNN techniques. It then presents the 

experimental setup, dataset description, feature extraction process, and methodology for both algorithms, followed by 

performance evaluation using accuracy, clustering efficiency, confusion matrices, and robustness measures. Finally, 

the paper concludes with a comparative discussion of results and outlines future research directions. 
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2. Literature Review 

A wide range of studies have explored the application of machine learning and pattern recognition techniques for fault 

diagnosis and signal classification across various engineering domains. In the context of partial discharge (PD) 

analysis, existing research demonstrates the effectiveness of both supervised and unsupervised learning methods for 

identifying complex discharge patterns. This section reviews relevant literature on SOM, KNN, and related ML 

approaches, highlighting their methodologies, datasets, strengths, and applicability to PD source identification.  

Liang S et al. [1] (2025) propose a catalog-based framework to detect unrecognized blends in deep optical ground-

based surveys, a major limitation in astronomical catalog reliability. By analyzing photometric inconsistencies and 

leveraging statistical models, the study improves blend detection without requiring high-resolution imaging. The 

authors introduce a methodology that flags ambiguous sources by comparing catalog entries against expected 

photometric and morphological signatures. Their approach enhances the accuracy of galaxy catalogs used in 

cosmology, particularly for weak lensing and large-scale structure studies. This work demonstrates how catalog-level 

analysis, combined with data-driven techniques, can uncover subtle blending effects in large astronomical datasets. 

Liu P et al. [2] (2025) presents an integrated framework combining non-target chemical analysis (NTA) with machine 

learning to identify contaminant sources in water systems. By coupling high-resolution mass spectrometry data with 

supervised models, the approach addresses challenges in detecting unknown or emerging contaminants. The 

framework improves interpretability by extracting key chemical fingerprints associated with pollution events. The 

authors demonstrate its effectiveness across diverse environmental scenarios, outperforming traditional contaminant-

tracking methods. Alve A. K. et al. [3] (2025) presents an integrated framework combining non-target chemical 

analysis (NTA) with machine learning to identify contaminant sources in water systems. By coupling high-resolution 

mass spectrometry data with supervised models, the approach addresses challenges in detecting unknown or emerging 

contaminants. The framework improves interpretability by extracting key chemical fingerprints associated with 

pollution events. The authors demonstrate its effectiveness across diverse environmental scenarios, outperforming 

traditional contaminant-tracking methods. Mo. Y et al. [4] (2024) assess and predict Water Quality Index (WQI) using 

machine learning models based on seasonal variations in key water parameters. The study analyzes a coastal city's 

water dataset, identifying critical factors influencing WQI trends. Machine learning models such as random forests 

and support vector regression demonstrated strong predictive accuracy, outperforming traditional statistical methods. 

Seasonal feature importance analysis revealed how environmental conditions drive water quality fluctuations. This 

research provides valuable insights for policymakers and environmental managers, highlighting the potential of data-

driven modeling for proactive water quality monitoring and decision-making in rapidly changing coastal 

environments. 

Zhou N et al. [5] (2024) introduce a rapid flash flood forecasting method by integrating hydrodynamic modeling with 

the K-Nearest Neighbor (KNN) algorithm. The hybrid approach enhances real-time flood prediction by using KNN 

to approximate hydrodynamic model outputs, significantly reducing computation time. The study validates the method 

using real-world basin data, demonstrating improved efficiency without compromising accuracy. This framework 

offers practical value for early warning systems, especially in regions lacking high-performance computing 

infrastructure. The work showcases KNN’s potential in environmental modeling and highlights the benefits of 

combining physical and data-driven approaches for fast and reliable flood forecasting. Dang D. et al. [6] (2024) applied 

data mining techniques to evaluate the operational state of substation electrical equipment. By extracting features from 

multi-source monitoring data—including temperature, electrical parameters, and operational history—the authors 

develop models to assess equipment health and detect early-stage faults. Clustering and classification algorithms 
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reveal patterns indicative of degradation, enabling predictive maintenance. The study emphasizes the advantages of 

data-driven diagnostics over traditional inspection-based methods, improving reliability and reducing downtime. 

Rueda R et al. [7] (2024) propose a machine learning approach for detecting and clustering flare-ups in COPD patients 

using longitudinal health data. By integrating physiological measurements, symptom reports, and temporal patterns, 

the study identifies early warning indicators of exacerbations. Unsupervised clustering reveals subgroups of patients 

with distinct flare-up behaviors, while supervised models improve prediction accuracy. The research demonstrates the 

clinical utility of ML for personalized COPD management, enabling proactive interventions and reducing 

hospitalization risk. Kashani Zadeh et al. [8] (2023) used multi-mode spectroscopy combined with fusion-based 

artificial intelligence to rapidly assess fish freshness across multiple supply chain stages. Spectral data from 

fluorescence, Raman, and imaging modalities are fused using machine learning techniques to generate accurate 

freshness predictions. The authors highlight the importance of multi-modal data integration for capturing diverse 

biochemical changes during fish degradation. Their AI-driven approach significantly improves freshness classification 

compared to single-sensor methods. This work supports safer food distribution by enabling real-time quality 

assessment and demonstrates the potential of spectroscopy–AI fusion for scalable monitoring in modern food supply 

chains. Vitor A.L.O. et al. [9] (2023) develop a fault classification approach for electrical machines using wavelet 

transform coefficients processed through Clarke and Park transformations. The method extracts discriminative 

patterns representing various faults such as broken rotor bars and unbalanced supply. Machine learning classifiers 

trained on transformed features exhibit high diagnostic accuracy. The study emphasizes the advantage of combining 

signal decomposition with mathematical transformations to enhance feature separability. This approach supports 

robust fault detection under different load and operating conditions, offering valuable contributions to predictive 

maintenance strategies in industrial motor systems. Liu R et al. [10] (2023) compared multiple machine learning 

models for petrographic identification of mud shale using image-derived features. The study evaluates algorithms 

including KNN, SVM, decision trees, and neural networks to classify shale types based on texture and mineral 

composition. Results show significant performance differences among models, with some achieving high accuracy 

through effective feature extraction and preprocessing. The work demonstrates ML’s potential for automating 

petrographic analysis, reducing reliance on manual microscopy. This comparative evaluation provides guidance for 

selecting appropriate models in geological studies and highlights the growing role of data-driven techniques in 

geoscience applications. Dai D. et al. [11] (2023) present a self-supervised clustering method for sorting Synthetic 

Aperture Radar (SAR) emitter signals. The proposed approach overcomes limitations of traditional supervised 

classification, which requires large labeled datasets rarely available in radar environments. By leveraging contrastive 

learning and feature-space clustering, the method autonomously groups emitter signals based on intrinsic patterns. 

Experiments demonstrate improved accuracy and robustness under noisy and complex scenarios. This work 

contributes significantly to electronic warfare and signal intelligence by providing an efficient technique for emitter 

identification, reducing reliance on labeled datasets, and enhancing situational awareness in modern SAR-based 

monitoring systems. 

Sargiani V et al. [12] (2022) introduce a Self-Organizing Map (SOM) enhanced with tree-based entropy structuring 

to support COVID-19 clinical diagnosis using routine blood tests. The model identifies discriminative hematological 

biomarkers and clusters patient profiles based on disease severity. Compared to conventional classifiers, the entropy-

structured SOM provides better interpretability and visualization of clinical patterns. The research demonstrates how 

unsupervised learning can complement limited diagnostic resources, particularly in developing regions. Results show 

strong diagnostic performance, confirming that blood-test-based AI systems can serve as cost-effective and rapid 

screening tools during large-scale infectious disease outbreaks. Guanghui Chen et al. [13] (2022) classify steel samples 
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using laser-induced breakdown spectroscopy (LIBS) combined with a Deep Belief Network (DBN). The method 

extracts emission spectra and models their nonlinear relationships to accurately categorize steel grades. Compared 

with traditional chemometric methods, the DBN achieves higher classification accuracy and better generalization 

under varying experimental conditions. The study highlights LIBS as a rapid, non-destructive evaluation technique 

and demonstrates how deep learning enhances spectral feature interpretation. This integration provides a powerful 

tool for industrial quality assessment, real-time material sorting, and automation in metallurgical manufacturing 

processes. Al Zaidawi et al. [14] (2022) explores partial discharge (PD) detection using Convolutional Neural 

Networks (CNN) and k-Nearest Neighbor (KNN) algorithms. PD signals are preprocessed into image-like 

representations and time–frequency maps, enabling the CNN to learn discriminative spatial–temporal features. KNN 

serves as a baseline method for classification. Results show that CNN significantly outperforms KNN in accuracy and 

noise robustness, demonstrating the advantages of deep feature extraction. Angulo-Saucedo et al. [15] (2022) apply 

supervised Self-Organizing Maps (SOM) for damage classification in structural health monitoring systems. Using 

vibration and sensor data, the SOM identifies patterns corresponding to structural defects such as cracks and loose 

connections. The supervised component improves class separability and enhances diagnostic accuracy. The method 

proves effective under varying operational and environmental conditions, making it suitable for real-world 

infrastructure monitoring. This study highlights SOM’s capability in handling high-dimensional data, enabling 

intuitive visualization and reliable classification of structural damage for preventive maintenance. Alusta Gamal et al. 

[16] (2021) integrates Self-Organizing Maps with data-driven predictive models to estimate oil Formation Volume 

Factor (FVF) for North African crude oils. By clustering reservoir and fluid properties, SOM uncovers nonlinear 

relationships that improve FVF prediction accuracy. The hybrid approach reduces uncertainty compared to 

conventional empirical correlations. Results indicate strong potential for applying unsupervised learning in petroleum 

engineering, particularly in early reservoir evaluation stages. The study demonstrates how combining SOM with 

predictive analytics enhances modeling reliability in regions with limited laboratory measurements. Tommaso Zoppi 

et al. [17] (2021) evaluate unsupervised anomaly detection algorithms for intrusion detection in evolving cybersecurity 

threat landscapes. Methods such as Isolation Forests, clustering-based models, and density estimators are tested on 

heterogeneous network traffic datasets. The study shows that unsupervised models can effectively detect unknown 

and emerging threats without relying on labeled attack data. Additionally, the authors discuss challenges in 

deployment, including model drift, scalability, and false-positive reduction. Their findings underscore the importance 

of unsupervised learning in modern security frameworks, where novel cyberattacks occur frequently and labeled 

datasets are incomplete or outdated. 

Algdamsi Hossein et al. [18] (2020) integrates Self-Organizing Maps (SOM) with a Multilayer Feedforward (MLFF) 

neural network to predict Formation Volume Factor (FVF) for North African crude oils. SOM is used for clustering 

and feature analysis, improving the MLFF network’s predictive capability by identifying coherent data patterns. The 

hybrid approach outperforms standalone empirical correlations and neural networks, demonstrating improved 

accuracy and generalization. Wanjiru S. et al. [19] (2020) focuses on anomaly detection and root-cause analysis in 

Long Term Evolution (LTE) networks to optimize data throughput. Using statistical analysis, machine learning, and 

traffic pattern modeling, the research identifies irregularities affecting quality of service. Clustering and classification 

techniques help pinpoint network faults such as congestion, interference, and hardware degradation. The work 

provides a comprehensive framework for LTE performance improvement by integrating anomaly detection with 

automated troubleshooting. This contributes to telecommunications engineering by enhancing network reliability, user 

experience, and operational efficiency. Kusiak A. et al. [20] (2020) presents a data-driven fault diagnosis approach 

for power transformers using dissolved gas analysis (DGA). By applying machine learning models to DGA indicators, 
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the study automates classification of transformer faults such as overheating, arcing, and insulation degradation. The 

research compares multiple algorithms, highlighting their accuracy and suitability for real-world deployment. The 

results demonstrate that data-driven ML methods outperform traditional DGA ratio-based interpretations. This work 

underscores the role of AI in modern power system asset management, enabling early fault detection and reducing the 

risk of transformer failure. Jaradat Abdelkareem M et al. [21] (2019) evaluates the use of Dynamic Time Warping 

(DTW) and K-Nearest Neighbors (KNN) for classifying appliance operation modes using smart meter data. Time-

series patterns of appliance usage are analyzed, and DTW aligns sequences with temporal variations, enabling KNN 

to classify operational states accurately. The study demonstrates strong performance in non-intrusive load monitoring 

(NILM), allowing identification of appliances without additional sensors. The research contributes to energy analytics 

by showing how lightweight ML techniques can support demand-side management and consumer energy feedback 

systems. I. Sadgali et al. [22] (2019) compared machine learning techniques for detecting financial fraud, evaluating 

algorithms such as KNN, SVM, decision trees, and logistic regression on benchmark datasets. Performance is assessed 

using accuracy, recall, and precision, with results highlighting the efficiency of ensemble and tree-based models. The 

authors emphasize challenges such as imbalanced data and feature variability in fraud patterns. Their findings illustrate 

the importance of robust feature engineering and model selection in financial fraud detection systems. The work 

demonstrates the applicability of ML in enhancing security and reducing economic losses. Rohani A et al. [23] (2019) 

investigate machine learning methods for free alignment classification of dikarya fungi using genomic sequence data. 

The study applies algorithms including KNN, SVM, and neural networks to classify fungal species without multiple 

sequence alignment, reducing computational overhead. Results show that ML-based alignment-free approaches can 

match or exceed traditional phylogenetic methods. The work highlights the effectiveness of data-driven pattern 

recognition in bioinformatics and demonstrates how ML techniques can accelerate large-scale fungal classification 

with improved scalability and accuracy. 

Table 1: Comparative Analysis of the Literature Review 

Author & 

Ref No. 

Methodology Used Dataset Used Advantages Results 

Liang et al. 

(2025) [1] 

Catalog-based 

photometric + 

morphological analysis 

Deep optical 

ground-based 

survey catalogs 

Detects unrecognized 

blends without high-

resolution images 

Improved blend 

detection reliability in 

cosmology catalogs 

Liu et al. 

(2025) [2] 

Non-target chemical 

analysis + ML 

classifiers 

High-resolution 

mass spectrometry 

data 

Identifies unknown 

contaminants; better 

interpretability 

Accurate contaminant 

source identification 

across scenarios 

Alve et al. 

(2025) [3] 

Lightweight ML 

models for malware 

detection 

Malware datasets 

for IoT/edge 

devices 

Low computation; 

optimized for 

constrained hardware 

Higher malware 

classification accuracy 

under limited 

resources 

Mo et al. 

(2024) [4] 

ML regression models 

(RF, SVR) for WQI 

prediction 

Coastal city water 

quality 

measurements 

Handles seasonal 

variations; high 

predictive capability 

ML models 

outperformed 

traditional WQI 

estimation methods 
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Zhou et al. 

(2024) [5] 

Hydrodynamic model + 

KNN approximation 

Basin 

hydrological data 

Faster computation for 

real-time flood 

prediction 

Rapid and accurate 

flash flood forecasting 

Dang et al. 

(2024) [6] 

Data mining, 

clustering, 

classification 

Substation 

monitoring 

datasets 

Early fault detection; 

enhanced reliability 

Effective health 

evaluation of electrical 

assets 

Rueda et al. 

(2024) [7] 

ML clustering + 

supervised models 

COPD patient 

physiological & 

symptom data 

Early flare-up 

detection; personalized 

monitoring 

High accuracy in flare-

up prediction and 

clustering 

Kashani 

Zadeh et al. 

(2023) [8] 

Multi-mode 

spectroscopy + AI 

fusion models 

Fish freshness 

spectral data 

Non-destructive; rapid 

assessment; multi-

sensor fusion 

Improved freshness 

classification accuracy 

across supply chain 

Vitor et al. 

(2023) [9] 

Wavelet transforms + 

Clarke & Park 

transforms + ML 

Electrical machine 

fault signals 

Strong feature 

separability; robust 

under varied loads 

High accuracy 

machine fault 

classification 

Liu et al. 

(2023) [10] 

ML models (KNN, 

SVM, ANN) for 

petrographic 

classification 

Mud shale 

petrographic 

images 

Better automation; 

reduces manual 

assessment 

Significant accuracy 

differences; best 

models achieved high 

performance 

Dai et al. 

(2023) [11] 

Self-supervised 

clustering + feature 

extraction 

SAR emitter 

signal datasets 

Works without labeled 

data; noise-robust 

Strong clustering and 

emitter signal sorting 

performance 

Sargiani et al. 

(2022) [12] 

Entropy-structured 

SOM 

Clinical COVID-

19 blood test 

datasets 

Simple biomarkers; 

interpretable clustering 

High diagnostic 

accuracy using routine 

tests 

Chen et al. 

(2022) [13] 

Laser-induced 

breakdown 

spectroscopy + DBN 

Steel LIBS spectra Non-destructive; 

strong nonlinear 

modeling 

DBN achieved 

superior steel grade 

classification 

Al Zaidawi 

(2022) [14] 

CNN + KNN for PD 

detection 

PD signal images 

& time-frequency 

maps 

CNN handles noise; 

deep feature extraction 

CNN significantly 

outperformed KNN 

Angulo-

Saucedo et al. 

(2022) [15] 

Supervised SOM Structural 

vibration sensor 

data 

High-dimensional 

clustering; robust 

under variability 

Accurate structural 

damage classification 

Alusta et al. 

(2021) [16] 

SOM + data-driven 

regression models 

North Africa 

crude oil FVF data 

Captures 

nonlinearities; reduces 

uncertainty 

High prediction 

accuracy for reservoir 

properties 
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Zoppi et al. 

(2021) [17] 

Unsupervised anomaly 

detectors (Isolation 

Forest, clustering) 

Network traffic 

datasets 

Detects novel 

intrusions without 

labels 

Effective intrusion 

detection in evolving 

threat environments 

Algdamsi et 

al. (2020) 

[18] 

SOM + MLFF neural 

network 

Crude oil 

properties dataset 

SOM improves pattern 

extraction & MLFF 

accuracy 

Outperformed 

conventional FVF 

prediction models 

Wanjiru 

(2020) [19] 

ML-based anomaly 

detection + traffic 

modeling 

LTE network data Identifies throughput 

issues; supports 

automated 

troubleshooting 

Improved LTE 

performance and fault 

localization 

Kusiak 

(2020) [20] 

ML classifiers for 

DGA-based diagnosis 

Transformer DGA 

datasets 

More accurate than 

ratio methods; early 

fault detection 

High reliability fault 

classification for 

transformers 

 

The comparative analysis table provides a consolidated overview of the methodologies, datasets, advantages, and 

outcomes across all reviewed studies. It highlights how diverse machine learning and data-driven approaches have 

been effectively applied in fields ranging from signal processing and structural health monitoring to medical 

diagnostics and environmental modeling. The table also helps identify common research trends, performance 

strengths, and methodological gaps relevant to future work. 

 

3. Dataset Description 

The dataset used for this study was generated through a controlled high-voltage (HV) experimental setup designed to 

replicate common insulation defects found in power equipment. A single-phase AC test transformer with adjustable 

voltage levels was employed to energize specially fabricated test cells containing different defect models. These cells 

were constructed using materials such as epoxy resin, pressboard, and air gaps to simulate realistic insulation 

conditions. By gradually increasing the applied voltage to predetermined stress levels, partial discharge (PD) activity 

was initiated and recorded under safe laboratory conditions. The experimental setup ensured repeatability, controlled 

noise environment, and consistent PD generation across multiple test cycles. 

3.1 Types of PD Sources 

• Corona Discharge: Generated by placing sharp metallic points or needle electrodes in air gaps, resulting in 

low-energy discharges caused by high electric stress at sharp edges. 

• Internal Discharge: Produced by embedding artificial voids or cavities within solid insulation (epoxy, resin, 

or pressboard), simulating manufacturing defects. 

• Surface Discharge: Created along the surface of solid insulation exposed to high voltage, typically occurring 

due to contamination, moisture, or surface irregularities. 

• Floating Electrode Discharge: Introduced by inserting a loosely connected metallic component within the 

insulation structure, generating intermittent discharges. 

 



 

Anusandhanvallari 

Vol 2025, No.1 

September 2025 

ISSN 2229-3388 

 

 

Available online at https://psvmkendra.com                                   1991 

3.2 Signal Acquisition Methods 

High-Frequency (HF) Current Transformers were used to measure electrical PD pulses in the range of MHz 

frequencies. Very-High-Frequency (VHF) and Ultra-High-Frequency (UHF) Electromagnetic Sensors captured 

radiated PD emissions, improving sensitivity to weak and high-speed discharge events. A digital oscilloscope and 

high-speed data acquisition card recorded PD waveforms with sampling rates ranging from 50–200 MS/s. 

Simultaneous multi-sensor acquisition ensured comprehensive coverage of both electrical and EM characteristics of 

PD activity. 

3.3 Preprocessing Steps 

• Noise Removal: Wavelet-based diagnosing and band-pass filtering were applied to suppress background 

noise and remove interference from external signals. 

• Amplitude Normalization: All signals were scaled uniformly to eliminate variations due to sensor sensitivity 

or distance. 

• Phase Synchronization: Signals were aligned with respect to the AC cycle to preserve phase-resolved PD 

characteristics (PRPD patterns). 

• Thresholding & Outlier Removal: Adaptive thresholds were used to eliminate spurious pulses and retain only 

true PD events. 

 

4. Feature Extraction 

Feature extraction plays a crucial role in accurately identifying partial discharge (PD) sources, as it transforms raw 

PD signals into meaningful numerical descriptors that can be processed by machine learning models such as SOM 

and KNN. In this study, three major groups of features were extracted: time-domain features, frequency-domain 

features, and phase-resolved partial discharge (PRPD) features. These features collectively capture the amplitude, 

statistical behavior, frequency content, and phase relationship of PD pulses, enabling robust classification. 

4.1 Time-Domain Features 

Time-domain features describe the statistical and amplitude characteristics of each PD pulse: 

• Peak Value: Represents the maximum amplitude of a PD pulse. Different PD sources generate unique peak 

magnitudes due to variations in discharge energy, making it an important discriminative feature. 

• Root Mean Square (RMS): Reflects the overall power of the PD signal. RMS values help distinguish between 

weak discharges (corona) and strong pulses (internal discharge). 

• Skewness: Measures the asymmetry of the PD waveform distribution. Changes in skewness indicate 

variations in pulse shape caused by different insulation defects. 

• Kurtosis: Quantifies the sharpness of the PD pulse distribution. High kurtosis values are often associated with 

impulsive and high-frequency PD events. 

These features capture intensity, variability, and waveform structure, offering key insights into discharge behavior. 

4.2 Frequency-Domain Features 

Frequency-domain features were extracted using the Fast Fourier Transform (FFT) to analyze the spectral content of 

PD pulses: 
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• FFT Coefficients: Provide detailed information about dominant frequency components. Internal discharges 

typically produce broader high-frequency spectra than corona discharges. 

• Spectral Power: Represents the energy distribution across frequency bands. It helps differentiate PD types 

based on their radiated frequency signatures. 

• Frequency-based features enhance classification accuracy in noisy environments by highlighting stable 

spectral characteristics that remain unaffected by transient disturbances. 

4.3 Phase-Resolved PD (PRPD) Features 

PRPD features utilize the relationship between PD pulse occurrence and the phase angle of the applied AC voltage: 

• Phase Angle Distribution: Each PD source exhibits distinct patterns of phase occurrence—for example, 

corona discharges often appear near voltage peaks, while surface discharges occur across wider phase ranges. 

• Pulse Count and Amplitude per Phase Bin: Segmenting the AC cycle into bins allows quantification of 

discharge activity in each phase interval. 

• PRPD Statistical Features (mean, variance): Capture the overall behavior of PD occurrences across the 

voltage cycle. 

PRPD features provide strong discriminatory power because they represent the physical mechanisms behind PD 

generation. 

 

5. Methodology 

5.1 Self-Organizing Map (SOM) 

The Self-Organizing Map (SOM) is an unsupervised neural network model used to project high-dimensional PD 

features onto a low-dimensional grid while preserving topological relationships. SOM is highly suitable for partial 

discharge pattern recognition because it clusters PD features visually, enabling clear interpretation of underlying 

discharge types. 

5.1.1 SOM Architecture  

• Grid Size: A two-dimensional grid (e.g., 10×10 or 15×15 neurons) was used to map PD feature vectors. 

Larger grids allow finer clustering, while smaller grids provide more general grouping. 

• Learning Rate: The learning rate was initialized between 0.1 and 0.5 and gradually reduced during training 

to ensure convergence. 

Example: η(t)  =  η₀ ×  exp(−t/τ) 

SOM Architecture Diagram: 

 
Figure 1: SOM Grid Architecture 



 

Anusandhanvallari 

Vol 2025, No.1 

September 2025 

ISSN 2229-3388 

 

 

Available online at https://psvmkendra.com                                   1993 

5.1.2 Training Procedure (Unsupervised Learning) 

Initialize weight vectors randomly. For each PD feature vector: 

• Compute similarity to all neurons (typically using Euclidean distance). 

• Identify the Best Matching Unit (BMU). 

• Update the BMU and its neighboring neurons based on a neighborhood function (Gaussian kernel). 

• Reduce neighborhood radius and learning rate gradually. 

• Continue until quantization error stabilizes. 

This process organizes similar PD samples into coherent clusters. 

5.1.3 Visualization Capabilities (U-Matrix, Cluster Maps) 

• U-Matrix (Unified Distance Matrix): Highlights distances between neighboring neurons. Larger distances 

appear as darker regions, indicating cluster boundaries. Useful for identifying distinct PD classes. 

• Cluster Maps: Color-coded maps representing neuron clusters based on PD feature similarity. These maps 

reveal natural grouping (corona, internal, surface discharge). 

SOM visualizations assist in interpreting PD behavior without manually labeling data. 

Algorithm 1: Self-Organizing Map (SOM) 

Input: 

• Training dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} (PD feature vectors) 

• SOM grid with neurons 𝑤𝑖𝑗  (weight vectors) 

• Max iterations: T 

• Initial learning rate: η₀ 

• Initial neighborhood radius: σ₀ 

 

Step-by-step SOM Algorithm 

      1. Initialize SOM 

• Randomly initialize all neuron weight vectors 𝑤𝑖𝑗  with small values. 

• Set iteration counter t=0. 

2. Repeat until t=T (max iterations): 

• Select Input Sample: Choose a feature vector xxx from the training set (sequentially or randomly). 

• Find Best Matching Unit (BMU) 

− For each neuron 𝑤𝑖𝑗 , compute distance to x: 

𝑑𝑖𝑗 = ‖𝑥 − 𝑤𝑖𝑗‖ 
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− BMU is the neuron with minimum distance: 

𝑖\∗, 𝑗\∗ = arg min
𝑖,𝑗

𝑑𝑖𝑗 

• Update Neighborhood Parameters 

− Update learning rate: 

𝜂(𝑡) = 𝜂0 ∙ 𝑒
−𝑡
𝑇𝜂  

− Update neighborhood radius: 

𝜎(𝑡) = 𝜎0 ∙ 𝑒
−𝑡
𝑇𝜎  

• Update Weights of BMU and its Neighbors 

− For each neuron 𝑤𝑖𝑗, compute neighborhood function (e.g., Gaussian): 

ℎ𝑖𝑗(𝑡) = 𝑒
‖(𝑖,𝑗)−(𝑖\∗,𝑗\∗)‖

2

2𝜎(𝑡)2
 

− Update weights: 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝜂(𝑡) ⋅ ℎ𝑖𝑗(𝑡) ⋅ (𝑥 − 𝑤𝑖𝑗(𝑡)) 

− Increment iteration counter: Set 𝑡=𝑡+1 

 

• Cluster Assignment (after training) 

− For each input vector 𝑥, find its BMU and assign it to that neuron’s cluster. 

− Use U-matrix and cluster maps for visualization and PD source interpretation. 

 

5.2 K-Nearest Neighbour (KNN) 

5.2.1 Distance Metric Selection 

KNN classification accuracy highly depends on the distance metric: 

• Euclidean Distance: Suitable for continuous PD features; commonly used for clustering PD signals based on 

amplitude, frequency, and PRPD features. 

• Manhattan Distance: Effective when features are sparse or when differences in individual dimensions must 

be emphasized. 

Distance metric selection is tuned based on validation performance. 

5.2.2 Choice of ‘k’ Value 

• ‘k’ determines the number of neighbors used for classification. 

• A small k may lead to noisy decisions; a large k may oversmooth class boundaries. 

• Typical values tested: k = 3, 5, 7, 9. 
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• Optimal k is selected through cross-validation to ensure robust PD classification. 

5.2.3 Supervised Training and Testing Process 

• KNN does not require a training phase; it memorizes the feature space. 

• For each test PD sample: 

− Compute distance to all training samples. 

− Select the k nearest neighbors. 

− Assign the class label based on majority voting. 

• Training dataset contains labeled PD classes (corona, internal, surface, void). 

This approach ensures simple, interpretable classification. 

5.2.4 Handling Imbalanced Datasets 

• Class weighting: Assign higher weights to underrepresented PD classes during voting. 

• Oversampling: Use SMOTE or random oversampling to balance PD sample distribution. 

• Feature scaling: Normalize all features to avoid dominance of high-amplitude PD signals. 

Balancing ensures that minority PD types are classified with high accuracy. 

Algorithm 2: K-Nearest Neighbour (KNN) 

Input: 

• Training dataset 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)} (feature vectors 𝑥1 , labels 𝑦1 = PD classes) 

• Test sample 𝑥𝑡𝑒𝑠𝑡  

• Number of neighbors: k 

• Distance metric: Euclidean or Manhattan 

 

Step-by-step KNN Algorithm (for one test sample) 

1. Feature Scaling (Preprocessing): Normalize or standardize all features in training and test sets 

(e.g., min–max scaling or z-score normalization). 

2. Compute Distances: For each training sample 𝑥𝑖 in 𝐷, compute distance to test sample 

• Euclidean distance: 

𝑑(𝑥𝑡𝑒𝑠𝑡 , 𝑥𝑖) =  √∑(𝑥𝑡𝑒𝑠𝑡,𝑗 − 𝑥𝑖,𝑗)2

𝑀

𝑗=1

 

• Manhattan distance: 

𝑑(𝑥𝑡𝑒𝑠𝑡 , 𝑥𝑖) = ∑|𝑥𝑡𝑒𝑠𝑡,𝑗 − 𝑥𝑖,𝑗|

𝑀

𝑗=1
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3. Sort Neighbors: Sort all training samples in ascending order of distance to 𝑥𝑡𝑒𝑠𝑡  

4. Select k Nearest Neighbors: Take the first k samples from the sorted list. 

5. Majority Voting (Class Decision) 

• Count the class labels among these k neighbors. 

• Optionally apply: Weighted voting (closer neighbors get higher weight). 

• Predicted class 𝑦̂ = class with maximum votes. 

 

6. Handling Imbalanced Datasets (Optional but Recommended) 

• Use one or more of the following in training: 

− Oversample minority PD classes (e.g., SMOTE). 

− Undersample majority class. 

− Use class weights in voting or evaluation. 

• Evaluate with metrics like precision, recall, F1-score per class. 

7. Repeat for all Test Samples: Apply Steps 2–6 for each test feature vector to obtain full classification results. 

 

 

6. Comparative Performance of SOM and KNN 

Table 2: Comparison between SOM and KNN 

Metric SOM (Unsupervised) KNN (Supervised) 

Learning Type Unsupervised clustering Supervised classification 

Classification Accuracy Moderate (depends on cluster separation) High (direct label-based 

prediction) 

Confusion Matrix Not directly applicable Fully applicable 

Clustering Efficiency 

(QE/TE) 

QE: Good for structured clusters; TE: Low if 

topology preserved 

Not applicable 

Visualization Strength Excellent (U-Matrix, component maps) Limited (decision boundaries 

only) 

Computational 

Complexity 

High during training; low during testing Low training; high testing 

complexity 

Noise Sensitivity Moderate – cluster shifts may occur High – distance metric affected 

by noise 
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Generalization Ability Good for pattern discovery Strong for labeled PD source 

classification 

Suitability for PD 

Classification 

Best for exploratory and unlabeled PD data Best for final supervised 

classification 

 

Table 3: Strengths and Weaknesses of SOM vs. KNN 

Method Strengths Weaknesses 

Self-Organizing 

Map (SOM) 

• Unsupervised learning—no need for 

labeled data.  

• Excellent visualization tools (U-Matrix, 

component maps).  

• Captures nonlinear relationships in 

high-dimensional PD features.  

• Useful for discovering hidden patterns 

or natural clusters in PD signals.  

• Good at dimensionality reduction and 

topology preservation. 

• Does not directly provide class labels—

requires interpretation.  

• Sensitive to noise and initial parameter 

settings (learning rate, radius).  

• Training can be computationally expensive 

for large grids.  

• Cluster boundaries may be ambiguous 

without post-processing. 

K-Nearest 

Neighbour (KNN) 

• Simple and easy to implement; no 

training stage required.  

• High classification accuracy with well-

labeled PD datasets.  

• Flexible with multiple distance metrics 

(Euclidean, Manhattan).  

• Works well for small- to medium-sized 

datasets.  

• Naturally handles multi-class PD 

classification. 

• Computationally expensive during testing—

distance computed for every sample.  

• Highly sensitive to noise and irrelevant 

features.  

• Requires careful selection of ‘k’ to avoid 

over/under-fitting.  

• Performance degrades with imbalanced 

datasets unless balanced properly.  

• Does not provide intrinsic visualization like 

SOM. 

 

The comparative evaluation indicates that both SOM and KNN offer strong but distinct advantages for partial 

discharge source identification. SOM excels in unsupervised clustering, making it highly effective for exploring PD 

data structures, identifying natural groupings, and visually interpreting discharge patterns through U-Matrices and 

cluster maps. It is especially valuable when labeled data is limited. However, SOM’s accuracy depends heavily on the 

quality of feature separation and becomes sensitive to noise-induced distortions. On the other hand, KNN demonstrates 

superior classification accuracy under supervised conditions, particularly when the dataset is well-labeled and features 

are properly normalized. Its simple decision-making mechanism, based on neighborhood voting, allows it to 
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generalize well across different PD types, although testing time increases with dataset size. Overall, SOM provides 

powerful insights into PD behavior, while KNN delivers reliable final classification, making them complementary 

methods for PD source identification. 

 

7. Discussion of Visualization Advantages from SOM 

One of the most significant strengths of the Self-Organizing Map (SOM) is its exceptional visualization capability, 

which makes it highly valuable for analyzing complex partial discharge (PD) data. Unlike traditional classification 

algorithms, SOM maps high-dimensional PD features onto a two-dimensional grid while preserving their topological 

relationships. This transformation enables clear visual interpretation of clusters, similarities, and boundaries between 

different PD sources such as corona, internal discharge, and surface discharge. 

The U-Matrix (Unified Distance Matrix) is one of SOM’s most powerful visualization tools. It highlights distances 

between neighboring neurons using color gradients, allowing users to easily identify cluster separations, dense regions, 

and ambiguous zones. Such visual cues are especially useful in PD analysis, where overlapping characteristics often 

make classification challenging. Component planes further enhance interpretability by showing how individual 

features contribute to cluster formation, offering insight into which time-, frequency-, or PRPD-domain attributes are 

most influential. 

SOM visualization also supports early detection of anomalies or newly emerging PD patterns that may not fit into 

predefined classes. This is particularly important in condition monitoring, where unexpected discharge behavior can 

indicate developing insulation defects. Overall, SOM’s visualization strengths make it a powerful exploratory tool 

that complements supervised classifiers by revealing structure, relationships, and hidden patterns within PD datasets. 

 

8. Conclusion and Future Scope 

This study conducted a comprehensive comparative analysis of Self-Organizing Map (SOM) and K-Nearest 

Neighbour (KNN) techniques for partial discharge (PD) source identification in high-voltage insulation systems. 

Based on experimentally acquired PD signals and extracted time-, frequency-, and phase-domain features, both 

methods demonstrated their strengths in analyzing PD behavior. SOM effectively clustered PD patterns in an 

unsupervised manner, offering strong visualization capabilities through U-Matrix and component planes, which help 

reveal hidden relationships among corona, internal, surface, and floating electrode discharges. In contrast, KNN 

exhibited superior classification accuracy due to its supervised nature, producing reliable predictions when trained 

with well-labeled datasets. Overall, the results confirm that SOM is well-suited for exploratory analysis and 

understanding PD data structures, whereas KNN is more appropriate for final classification tasks requiring precision 

and consistency. 

 

Future Scope 

Future research may explore hybrid architectures that combine SOM’s visualization strengths with KNN’s 

classification capability, potentially enhancing robustness under noisy PD conditions. Deep learning models such as 

CNNs and autoencoders can be integrated to extract richer features from raw PD waveforms or PRPD images. 

Additionally, expanding the dataset using real-time field measurements and incorporating advanced denoising 
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techniques could further improve classification performance. Adaptive KNN methods, dynamic SOM grids, and 

ensemble learning approaches could also be investigated to handle imbalanced PD datasets more effectively. Finally, 

integrating these ML models into online monitoring systems will help advance predictive maintenance in smart grids 

and digital substations. 

 

References 

[1] Liang, S., Adari, P., & von der Linden, A. (2025). Catalog-based detection of unrecognized blends in deep optical 

ground based catalogs. arXiv preprint arXiv:2503.16680. https://doi.org/10.48550/arXiv.2503.16680  

[2] Liu, P., Pan, D., Jiao, XY. et al. Integrating non-target analysis and machine learning: a framework for 

contaminant source identification. npj Clean Water 8, 78 (2025). https://doi.org/10.1038/s41545-025-00504-z  

[3] Alve, A. K., Rahman, A., Zaman, S., & Himel, S. H. (2025). Enhancing multi-class malware detection in resource-

constrained environments (Doctoral dissertation). http://hdl.handle.net/10361/26556  

[4] Mo, Y., Xu, J., Liu, C. et al. Assessment and prediction of Water Quality Index (WQI) by seasonal key water 

parameters in a coastal city: application of machine learning models. Environ Monit Assess 196, 1008 (2024). 

https://doi.org/10.1007/s10661-024-13209-6  

[5] Zhou, N., Hou, J., Chen, H. et al. A Rapid Forecast Method for the Process of Flash Flood Based on 

Hydrodynamic Model and KNN Algorithm. Water Resour Manage 38, 1903–1919 (2024). 

https://doi.org/10.1007/s11269-023-03664-0  

[6] Dang, D., Liu, Y., & Lee, S.-K. (2024). State Evaluation of Electrical Equipment in Substations Based on Data 

Mining. Applied Sciences, 14(16), 7348. https://doi.org/10.3390/app14167348  

[7] Rueda, R., Fabello, E., Silva, T. et al. Machine learning approach to flare-up detection and clustering in chronic 

obstructive pulmonary disease (COPD) patients. Health Inf Sci Syst 12, 50 (2024). 

https://doi.org/10.1007/s13755-024-00308-4  

[8] Kashani Zadeh, H., Hardy, M., Sueker, M., Li, Y., Tzouchas, A., MacKinnon, N., Bearman, G., Haughey, S. A., 

Akhbardeh, A., Baek, I., Hwang, C., Qin, J., Tabb, A. M., Hellberg, R. S., Ismail, S., Reza, H., Vasefi, F., Kim, 

M., Tavakolian, K., & Elliott, C. T. (2023). Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes 

Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence. Sensors, 23(11), 5149. 

https://doi.org/10.3390/s23115149  

[9] Vitor, A.L.O., Scalassara, P.R., Goedtel, A. et al. Patterns Based on Clarke and Park Transforms of Wavelet 

Coefficients for Classification of Electrical Machine Faults. J Control Autom Electr Syst 34, 230–245 (2023). 

https://doi.org/10.1007/s40313-022-00946-7  

[10] Liu, R., Zhang, L., Wang, X., Zhang, X., Liu, X., He, X., Zhao, X., Xiao, D., & Cao, Z. (2023). Application and 

Comparison of Machine Learning Methods for Mud Shale Petrographic Identification. Processes, 11(7), 2042. 

https://doi.org/10.3390/pr11072042  

[11] Dai, D., Qiao, G., Zhang, C., Tian, R., & Zhang, S. (2023). A Sorting Method of SAR Emitter Signal Sorting 

Based on Self-Supervised Clustering. Remote Sensing, 15(7), 1867. https://doi.org/10.3390/rs15071867  

[12] Sargiani, V., De Souza, A. A., De Almeida, D. C., Barcelos, T. S., Munoz, R., & Da Silva, L. A. (2022). 

Supporting Clinical COVID-19 Diagnosis with Routine Blood Tests Using Tree-Based Entropy Structured Self-

Organizing Maps. Applied Sciences, 12(10), 5137. https://doi.org/10.3390/app12105137  

[13] Guanghui Chen, Qingdong Zeng, Wenxin Li, Xiangang Chen, Mengtian Yuan, Lin Liu, Honghua Ma, Boyun 

Wang, Yang Liu, Lianbo Guo, and Huaqing Yu, "Classification of steel using laser-induced breakdown 

https://doi.org/10.48550/arXiv.2503.16680
https://doi.org/10.1038/s41545-025-00504-z
http://hdl.handle.net/10361/26556
https://doi.org/10.1007/s10661-024-13209-6
https://doi.org/10.1007/s11269-023-03664-0
https://doi.org/10.3390/app14167348
https://doi.org/10.1007/s13755-024-00308-4
https://doi.org/10.3390/s23115149
https://doi.org/10.1007/s40313-022-00946-7
https://doi.org/10.3390/pr11072042
https://doi.org/10.3390/rs15071867
https://doi.org/10.3390/app12105137


 

Anusandhanvallari 

Vol 2025, No.1 

September 2025 

ISSN 2229-3388 

 

 

Available online at https://psvmkendra.com                                   2000 

spectroscopy combined with deep belief network," Opt. Express 30, 9428-9440 (2022) 

https://doi.org/10.1364/OE.451969  

[14] Al Zaidawi, N. Q. J. (2022). Partial discharge detection using convolutional neural network and k-nearest 

neighbor algorithm. https://hdl.handle.net/11363/4086  

[15] Angulo-Saucedo, G. A., Leon-Medina, J. X., Pineda-Muñoz, W. A., Torres-Arredondo, M. A., & Tibaduiza, D. 

A. (2022). Damage Classification Using Supervised Self-Organizing Maps in Structural Health Monitoring. 

Sensors, 22(4), 1484. https://doi.org/10.3390/s22041484 

[16] Alusta, Gamal, Algdamsi, Hossein, Amtereg, Ahmed, Agnia, Ammar, Alkouh, Ahmed, and Bacem Kcharem. 

"Integration of Self Organizing Map and Date Driven Methods to Predict Oil Formation Volume Factor: North 

Africa Crude Oil Examples." Paper presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and 

Exhibition, Virtual, October 2021. doi: https://doi.org/10.2118/205782-MS   

[17] Tommaso Zoppi, Andrea Ceccarelli, Tommaso Capecchi, and Andrea Bondavalli. 2021. Unsupervised Anomaly 

Detectors to Detect Intrusions in the Current Threat Landscape. ACM/IMS Trans. Data Sci. 2, 2, Article 7 (May 

2021), 26 pages. https://doi.org/10.1145/3441140  

[18] Algdamsi, Hossein, Alkouh, Ahmed, Agnia, Ammar, Amtereg, Ahmed, and Gamal Alusta. "Integration of Self 

Organizing Map with MLFF Neural Network to Predict Oil Formation Volume Factor: North Africa Crude Oil 

Examples." Paper presented at the International Petroleum Technology Conference, Dhahran, Kingdom of Saudi 

Arabia, January 2020. doi: https://doi.org/10.2523/IPTC-20102-Abstract  

[19] Wanjiru, S. (2020). Long Term Evolution anomaly detection and root cause analysis for data throughput 

optimization (Doctoral dissertation, University of Nairobi). http://erepository.uonbi.ac.ke/handle/11295/153153  

[20] Kusiak, A. (2020). Data-driven fault diagnosis of power transformers using dissolved gas analysis (DGA). 

International Journal of Technology: IJ Tech. doi: 10.14716/ijtech.v11i2.3625  

[21] Jaradat, Abdelkareem M., "Classifying Appliances Operation Modes Using Dynamic Time Warping (DTW) And 

K Nearest Neighbors (KNN)" (2019). Electronic Thesis and Dissertation Repository. 6479. 

https://ir.lib.uwo.ca/etd/6479  

[22] I. Sadgali, N. Sael, F. Benabbou, Performance of machine learning techniques in the detection of financial frauds, 

Procedia Computer Science, Volume 148, 2019, Pages 45-54, ISSN 1877-0509, 

https://doi.org/10.1016/j.procs.2019.01.007  

[23] Rohani, A., Mamarabadi, M. Free alignment classification of dikarya fungi using some machine learning 

methods. Neural Comput & Applic 31, 6995–7016 (2019). https://doi.org/10.1007/s00521-018-3539-5  

 

 

https://doi.org/10.1364/OE.451969
https://hdl.handle.net/11363/4086
https://doi.org/10.3390/s22041484
https://doi.org/10.2118/205782-MS
https://doi.org/10.1145/3441140
https://doi.org/10.2523/IPTC-20102-Abstract
http://erepository.uonbi.ac.ke/handle/11295/153153
https://ir.lib.uwo.ca/etd/6479
https://doi.org/10.1016/j.procs.2019.01.007
https://doi.org/10.1007/s00521-018-3539-5

