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Abstract: This study focuses on improving inventory management decisions under uncertain demand by
integrating stochastic modeling with machine learning—based demand prediction. Traditional inventory systems
often assume that demand follows a predictable pattern; however, in reality, it fluctuates due to seasonality, market
dynamics, promotions, and supply disruptions. Machine learning provides a modern solution by analyzing large
datasets and identifying nonlinear demand patterns that traditional models cannot capture. The proposed
framework combines probabilistic demand forecasts from machine learning models with stochastic optimization
techniques to minimize total inventory cost while maintaining desired service levels. The approach enables more
accurate estimation of safety stock levels, reduces stockouts, and improves operational efficiency. Applications
across industries such as aerospace, retail, logistics, and manufacturing demonstrate that machine learning—driven
forecasting reduces holding costs, enhances responsiveness, and builds supply chain resilience. The study
highlights how predictive analytics and optimization together create adaptive, data-driven inventory systems
capable of performing effectively in uncertain and volatile business environments.

Keywords: Machine Learning, Stochastic Inventory Optimization, Demand Forecasting, Supply Chain
Management.

1. Introduction

Inventory management sounds simple keep enough stock to meet customer demand, but not so much that you
waste money. In reality it is very hard, because demand is uncertain, changes over time, and depends on many
real-world factors like season, price, supply problems, and customer behavior. Because of this, companies are
now using machine learning (ML) to both predict demand and decide how much to order. This combination helps
reduce costs, prevent shortages, and improve service level to customers (Dodin et al., 2023; Seyedan et al., 2023).

In traditional methods, managers often assumed demand was stable or could be guessed from averages. But in
many industries, demand is irregular. For example, in the aerospace industry, spare parts are needed at
unpredictable times. Dodin et al. (2023) built a forecasting system for Bombardier that uses ML and time-series
models together to predict when and how much demand will appear. Their system improved forecast accuracy by
7% and reduced bias by 5%, and it is now used every day to plan more than 1 billion CAD worth of aftermarket
parts. This shows how better forecasting helps avoid both excess stock and delays (Dodin et al., 2023).

Fast-moving consumer goods (FMCQG) companies face a different challenge: they must refill products fast and
cheaply, or they lose sales. Deraz (2023) showed that normal EOQ (economic order quantity) formulas are not
always good enough because real demand is not linear or simple. Through testing several ML models — random
forest, boosted decision trees, linear regression, and neural networks the study found that a combined boosted
decision tree and neural network model gave the best results. It improved “available to promise” by 83% and
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operating cash flow by 66%, meaning the company could promise stock more confidently and also free up money
instead of locking it in extra inventory (Deraz, 2023).

In online retail and e-commerce, demand can change suddenly because of trends, marketing, or promotions.
Seyedan, Mafakheri, and Wang (2023) used ensemble deep learning models to predict demand and then used those
predictions to set safety stock levels that still meet the desired service level. In simple words, they did not only
forecast demand they also told how much “backup stock” is needed so that customers do not face stockouts. This
is important because carrying too little means lost sales, but carrying too much means high storage cost (Seyedan
et al., 2023). Similar ideas appear in logistics, where Hayta, Gencturk, Ergen, and Ko6klii (2023) used models like
LSTM and MLP to forecast pallet demand over 25 days and 4 weeks. LSTM worked best in the short term, and
MLP was better for slightly longer forecasts. This helps transport companies plan capacity and avoid last-minute
stress (Hayta et al., 2023).

Other industries face their own risks. During the global semiconductor shortage, companies learned how
dangerous poor forecasting can be. Piedrafita Acin (2023) compared 18 forecasting models and showed that
gradient boosting models can outperform traditional methods when the data is noisy or unstable. In multi-channel
retail, CatBoost beat other models like XGBoost and linear regression for 7-day and 30-day forecasts, helping
stores avoid both overstock and empty shelves (Kheawpeam & Sinthupinyo, 2023). In agriculture warehousing,
machine learning was used to predict stock movement so that warehouses do not keep too much or too little grain,
helping balance profit and availability (Shirisha, Divyamani, Neha, Sravani, & Suresh, 2022). In supermarkets
selling imported food, gradient boosting again worked best for predicting demand and reducing stockouts, better
than basic time-series models (Gunasekera, 2022).

Research also shows that these methods are useful beyond normal retail products. Machine learning and neural
networks can improve raw material planning, production continuity, and decision speed across the whole supply
chain (Kedarisetty & Kantheti, 2022; UmaMaheswaran et al., 2022). ML-based planning can cut inventory
holding cost by 15-20% and increase service levels by 10—15%, especially in uncertain times like the COVID-19
period (Nathany, 2022). ML has even been used to track and predict material needs for national road infrastructure,
treating road materials like “inventory” and planning how much will be needed in the future (Ebrahimi, Rosado,
& Wallbaum, 2022). Similar forecasting logic also appears in financial markets, where machine learning and deep
learning (like LSTM) can predict stock price movements in sectors such as banking, pharma, FMCG, power, and
automobile, helping investors make faster and more confident decisions (Maheswari & Jaya, 2021). Together, all
these studies point to the same conclusion: inventory optimization today is no longer just about guessing demand.
It is about using machine learning to forecast demand, measure uncertainty, set safety stock scientifically, protect
service levels, reduce cost, and keep the business resilient under shocks (Shukla & Pillai, 2022; Stanelyté, 2021;
Nasution, Matondang, & Ishak, 2022).

1I. Review of related literature

Dodin et al. (2023) solved the supply chain forecasting problem of intermittent demand for business aircraft spare
parts where the demand is irregular and highly unpredictable so that shortages or excess are expected. AbstractThe
Aftermarket demand forecasting problem is an important but challenging problem for aerospace manufacturers,
as poor demand forecast at the early stage of the lifecycle may lead to costly management problems in the later
stage. This complete predictive analytics pipeline was an integrated framework that combined ML and traditional
time series models together. We employed a tree-based ML method to estimate two intermittent demand
components —demand sizes and inter-demand intervals— based on an extensive set of features, among which
flight data were included. Ensemble techniques were used to combined outputs from multiple forecasting models
to enhance the robustness and accuracy of predictions for a wide range of demand patterns. The validation results
demonstrated that forecast accuracy improved by 7% and forecast bias decreased by 5%. Successfully deployed
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and used daily to predict aftermarket demand > 1B cad using a ML based Bombardier Aftermarket forecasting
system.

Deraz (2023) studied the fact thatwhen faced with cut-throat competition, Distribution companies have always
been looking at better ways to improve profitability and also look for mechanisms to reduce costs involving
improving their forecasting processes. In order to help to more effectively regulate inventory capabilities to meet
customer demand by obtaining company-wide financial and organizational gains, the paper proposed accurate and
effective demand forecast for economic order quantity (EOQ). Considering the limitations of traditional EOQ
approaches (i.e., not able to deal with nonlinearities for real world data), ML was used to optimise the stock level
of the FMCG products. The goal of the research was to obtain a suitable supervised ML algorithm based on EOQ
prediction, as well as to test them for performance. And the random forest (RF), linear regression (LR), boosted
decision tree (BDT), and artificial neural network (ANN) algorithms were used to predict weekly EOQ, in a
parallel (using some data) and a sequential (predictable) scenario. BDT and ANN resulted in higher accuracy in
both cases. This was a single-case study of one of the largest FMCG distributors in Egypt, which used semi-
structured interviews and company data from January 2014 to December 2018, analyzed in Microsoft Azure, a
cloud-based ML platform. The sequential model outperformed other models, and the model used by the company
performed the worst. In the end, a sequential ML architecture of BDT and ANN was found to be the best
performing architecture with key metrics—“available to promise” and “operating cash flow”—improving by 83%
and 66%, respectively, over the company’s baseline performance results.

Seyedan et al. (2023) described that inventory management was created to meet customer needs at a fixed service
level with the lowest costs. Citing the volatility in the market, they emphasized that customer demand was very
often not stable and ignoring this uncertainty led him to do less or more inventories, causing deficits or
inefficiencies. Experienced inventory managers needed systems for batch ordering, so that all the items reached,
once stock was almost depleted before he/she run of stock giving enough lead time keeping in mind that its natural
to have gap between placing the order before receiving the order. More importantly, the study highlighted the need
for proper demand forecasting as it plays a crucial role in overcoming uncertainties in ordering and improving
inventory costs. While this has not previously been the most precise prediction to work with, big data analytics
and large historical volumes had been making this task easier. The researchers used ensemble deep learning-based
forecasting techniques and compared their performances to forecast future demand in the online retail sector. On
basis of this, they emphasized that both ensemble learning significantly enhances predictive accuracy due to the
ability to leverage multiple individual models while combining it with deep learning improves the generalizability
of the model. Lastly, setting of safety stock levels was estimated according to the predicted distribution of demand
with the aim of optimizing the system of inventory under a cycle service level target.

Hayta et al. (2023) explored the use of machine learning approaches to speed up the analysis of future demand
in the logistics domain using MATLAB platform. To maintain the confidentiality and security of the requested
data, they trained MLP, LSTM and CNN models using numerical pallet demand data from a logistics company.
The dataset contains 3,062 daily records that were pre-processed to fix the missing and inaccurate values and
replace outlier values as well. The subsequent models were assessed in terms of their performance on predicting
the number of pallets over periods of 25 days and 4 weeks and validation was performed using various metrics
such as MSE, RMSE, NRMSE, MAE, ESD and RC where predictions are compared against actual data. The
findings showed that over the last 25 days, the LSTM model had the best short-term forecasting with the lowest
MSE of (6,410.5571) and RMSE of (80.0660), whereas for the 4-week forecasts, the results were the best on a
performance basis with the MLP model. The CNN model showed still a good performance but slightly lower with
MSE 8,492.4297 and RMSE 92.1544. In summary, this study showed that ML models can be used to predict pallet
transportation demands, particularly LSTM and MLP models, which can improve the capacity of logistics
providers to make smarter and more strategic decisions.
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Piedrafita Acin et al. (2023) assessed the global semiconductor shortage delivering a catastrophic blow to
industrial supply chains and demonstrated how critical proper inventory management and demand forecasting are
to keeping operations stable. This study focused on comparing multiple time-series forecasting methods, including
both traditional statistical approaches, machine learning methods, and deep learning methods, to ascertain the best
performing methods for part demand prediction at a semiconductor manufacturing company. Through a
comparative case study of 18 models, followed by accuracy assessment of each model, the authors propose a triple
bottom line for forecasting accuracy, characterizing the data, model, and forecast (the three “bottom lines” of
forecasting). In conclusion, our study showed that, despite the major challenges of poor data quality and strict
forecasting requirements, gradient boosting model can achieve better adaptability and performance than
traditional forecasting models, indicating that advanced machine learning models have great potential to improve
inventory forecasting and thus lead to more reliable and better decisions in the semiconductor industry.

Kheawpeam et al. (2023) examined the challenges presented by small- and medium-sized retail shops developing
many online and offline distribution channels, leading to poor inventory control, shortages of products,
overstocking and large expenses because of transportation, storage and labor (or: work) costs In this context, the
study attempted to propose a solution in machine learning for forecasting demand while handling customer
demand control and inventory in multi-channel retailing context. The researchers used daily sales data of a Thai
retail store over the period 2017-2021 to develop the demand forecasting models with a horizon of 7 days and 30
days ahead of the forecasting date. Mainly used the CatBoost algorithm and compared performance with XGBoost
and Linear Regression models. The CatBoost model outperformed all other models on SMAPE (7 days 24.13%,
30 days 24.47%), showing its efficiency for demand prediction improvement and facilitating retail operations
inventory control.

Shirisha et al. (2022) covered the AWMS, which is a custom, composite software program used to efficiently
track, control, and monitor items entering and existing a warehouse for agricultural products. The research showed
that machine learning-based predictive analytics help augment existing manual processes, provide greater insights
into changing customer behavior and create new opportunities. The predictive model uses demand forecasting
algorithms naturally, using the available historical purchase data and the seasonal patterns to build the information.
It is useful in avoiding any kind of stock outs and overstocking which synchronizes inventory and helps in striking
a right balance between sales potential and profitability in agri supply chain management.

Nasution et al. (2022) examined an empirical study of the application of machine learning techniques in demand
forecasting and how the application of these methods improve the performance and competitiveness of the
company. Based on a descriptive and qualitative scope of the literature reflecting studies from 2010 to 2022, the
authors conservatively suggest that machine learning-based demand forecasting allows for a marked improvement
in accuracy of forecasts in comparison to traditional forecasting techniques, allowing for better inventory
management and higher customer satisfaction through product availability at the right time and place. The authors
concluded machine learning successfully identifies demand influencing variables which help achieve forecasts
indicative of actual demand. This, in turn, enables managers achieve better informed decisions and improves
strategic planning and overall efficiency of the supply chain management process.

Kedarisetty et al. (2022) elaborated on how inventory management systems play a pivotal role in monitoring
products throughout the supply chain— from procurement to end sales, and how the lack of these systems often
leads to overstocking or understocking of inventory. It concluded that the inventory system not only tracks the
level of products but also assesses the availability of raw materials needed for manufacturing. The authors wrote
that although there are different inventory management methods available, the incorporation of Machine Learning
and Deep Learningtechniques (Recurrent Neural Networks (RNN), convolutional Neural Networks (CNN), and
Artificial Neural Networks (ANN)) is very importantfor improving the system efficiency, accuracy, and speed.
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The main purpose of their research was to determine the most accurate and efficient deep learning algorithm for
enhancing inventory management efficiency.

Shukla et al. (2022) discussed the stockouts problem in supply chains, highlighting the fact that the ultimate
objective of any supply chain is to deliver the right amount of goods in the right location and at the right time,
since stockouts not only lead to revenue losses but also the deterioration of service quality and competitive
advantage. It emphasized that keeping the inventory levels right is vital for customer satisfaction, and Al and ML
can assist businesses by forecasting the future demand and organizing the inventory proactively. Since there are
no actual datasets available for this research, the researchers simulated a four-stage divergent supply chain with
eight members under three different inventory replenishment policies: Order-Up-To (OUT), OUT Smoothing
(OUTS) and (s, S). Several supervised machine learning algorithms were trained and validated using five-fold
and random search cross-validation methods. The discovery that boosting algorithms provided enhanced
performances over other classifiers and the introduction of meta-learning based stacked ensemble model
integrating XGBoost, AdaBoost and Random Forest which can simultaneously predict with a better performance
level for all the supply chain members.

UmaMaheswaran et al. (2022) referred to neural networks as synthetic networks of interconnected nodes that
could be well suited for use in adaptive control, prediction, and other plausible analysis. In this research, inventory
management concept and its prominent elements were explained, and the applications of neural networks in a
smart inventory management system were investigated as well as the benefits of using Neural Networks to
establish a smart inventory management system. The section sent a scope of coverage on the architecture of neural
networks, alongside with the flow chart showing the workflow of the model. The discussion section or the main
body of this article evaluated critically the applications of machine learning-based neural network models in
various industries with real-world examples wherever applicable to showcase their usefulness. In this research
survey of 61 respondents, two critical questions on the neural network model were posed, and where possible,
they were extolled to express their opinions. The results were graphically shown according to the responses given.
The study outlined the major insights and findings that neural network models have great importance and potential
in the area of augmenting inventory control processes.

Gunasekera et al. (2022) investigated the difficulty for supermarket groups to ensure sustained access for
customers to imported food products versus meeting inventory cost control benchmarks especially during the time
of macroeconomic fluctuations over the last few years. They observed that fewer stock-out situations
proportionately increased customer satisfaction and loyalty making accurate forecasting of demand all the more
imperative. Nonetheless, upon conducting a review of relevant literature, they observed that the comparison of
demand prediction models for imported food products using ML was minimal. Hence, their work focused on
comparing multiple approaches based on machine learning to obtain an optimal demand forecasting approach for
such products. What business techniques are appropriate to use in real life when applying the proposed model
were also discussed in the study. They tested a few methods such as Artificial Neural Network (ANN), K-Nearest
Neighbour (KNN), Support Vector Model (SVM), Random Forest, and a Gradient Boosting using Python for
Statistical analysis and Orange data mining tool for model development. The results shown that traditional time
series models perform poorly on such complex-imported food sales however, the Gradient Boosting technique
gives the best results. In conclusion, they found that this approach could be used to develop a demand prediction
model that would even out stock levels to prevent constant out-of-stock situations and reducing sales losses,
recommending that any future work in this area should try to incorporate seasonality, or the effects of brand
substitution.

Nathany et al. (2022) explored how inventory planning and optimization is vital in striking the right balance
between meeting customer demand and ensuring operational efficiency in today's supply chain management. In
this paper, they investigated the state of inventory optimization processes, their adoption, and the high impact of
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these processes on business performance in the context of global supply-chain disruptions and rapid technology
advances. They studied different facets of inventory management, which include predicting future demand,
developing strategies and methods of replenishing stock. They evaluated the impact of various optimization
strategies including demand forecasting with machine learning, multi-objective optimization, and advanced
inventory models based on data from multiple sources and case studies. It also highlighted the role of Al and
machine learning in enhancing inventory optimisation with uncertain demand and disruption. Results indicated
that data driven approaches on inventory could reduce holding costs between 15 and 20%, while improving service
levels 10 to 15%. Additionally, it emphasized the importance of analyzing data in real time, human—technology
collaboration, and dynamic decision-making in keeping the right amount of stock. The talk also addressed how
the COVID-19 pandemic and other such disruptive events impact the supply chain while sharing lessons and ideas
on how to build resilient, agile, and strong inventory systems that can improve the resiliency of the entire supply
chain.

Ebrahimi et al. (2022) proposed a new method to assess the national stocks and flows of road infrastructure using
material flow accounting (MFA). This study attempted to address four key limitations prevalent in much of the
MFA literature: the retrospective nature of most research, the reliance on archetypes to characterize infrastructure,
the overlooking of dissipative outflows, and the insufficient consideration of uncertainties. To address these gaps,
authors proposed a dynamic bottom-up MFA method and applied it to the Norwegian road network to estimate
and project material stocks and flows from 1980 to 2050. Rather than using archetypical mapping, a supervised
machine learning model was then utilised to predict road infrastructure more precisely. Dissipation of some
materials due to tire—pavement interaction was also included in the study, in addition, iterative classification and
regression trees, lifetime distributions, randomized intensities and sensitivity analyses were incorporated to
quantify uncertainties. It offered a more holistic, empirical basis for understanding and predicting the material
dynamics of national road systems.

Stanelyté et al. (2021) discussed how shifts in social and economic conditions were shaping consumer behavior
and highlighted the increasing need for demand planning as a differentiator in the retail landscape. The objective
of this study was to analyze the different approaches to building demand prediction models and, using the learned
concepts, develop a demand forecasting and inventory optimization model which are integrated in nature. In order
to establish the theoretical framework, articles related to inventory management systems, analytical programs and
methods used in the mathematical studies conducted in the previous sections were observed. Based on this
analysis, the authors chose a fixed time ordering system, the KNIME analytical program (KNIME, 2023), and the
Bayesian Additive Regression Trees (BART) mathematical method to develop an applicable model for
determining demand. The data was then iteratively processed and refined to improve the model fit, using detailed
sales data for each week in the first half of 2019. As an example, based on the final BART-based forecasting model
developed, a replenishment assessment run on July 11, 2019, indicated the need to replenish 399 products at ten
stores to meet expected customer demand. The replenishment model was then evaluated further in order to develop
an even better inventory model such as that based on the economic order quantity (EOQ) model in order to balance
the cost of ordering inventory and the cost of holding that inventory in the company.

Maheswari et al. (2021) emphasized as the stock exchange of any country determines the overall financial
standing and acts as an indication of market trends. India has two major stock exchanges — the oldest being
Bombay Stock Exchange (BSE) and the largest being National Stock Exchange (NSE) by turnover. So, exchanges
are the ones where actual stock dealing happens while indices like Sensex and Nifty assess the overall market or
sector wise performance. In the past, stock market prediction was done by financial professionals, but due to the
emergence and breakthroughs in machine learning and data analytics, computational methods have found their
way to predict trends. In this study, we predicted stock prices of five major sectors pharmaceutical, banking,
FMCG, power and automobile selected companies i.e Cipla, TorrentPharma, ICICI Bank, SBI, ITC, Hindustan
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Unilever, Adani Power, Power Grid, Mahindra & Mahindra, and Maruti Suzuki. It showed that using linear
regression (which is a machine learning method) and long short-term memory as a deep learning model, stock

prices can be predicted with better results to allow investors to take the right decisions.

I11. Finding from the Study

Author(s) & Year | Focus Area /| Methods /| Dataset / Context | Key Findings / Results
Problem Models Used

Dodin et al. (2023) | Forecasting Tree-based ML + | Bombardier Forecast accuracy 17%,
intermittent traditional time | Aftermarket bias |5%; robust hybrid
demand for | series + | system; >1B CAD | ML system for irregular
business  aircraft | ensemble daily predictions demand
spare parts methods

Deraz (2023) EOQ optimization | RF, LR, BDT, | Egypt FMCG | Sequential BDT-ANN
and demand | ANN (parallel + | distributor (2014— | model best; improved
forecasting for | sequential 2018) “Available to Promise”
FMCG models) on +83%, “Cash Flow”

Azure ML +66%

Seyedan et al. | Online retail | Ensemble + deep | Retail data (Big | Ensemble deep learning

(2023) demand forecasting | learning Data + historical | improved prediction
for inventory | forecasting volumes) accuracy and safety
optimization stock setting

Hayta et al. (2023) | Predicting  pallet | MLP, LSTM, | 3,062 daily records | LSTM best for 25-day
transport demand in | CNN from logistics firm | forecast (MSE=6410),
logistics (MATLAB) MLP best for 4-week

forecast; ML effective
for logistics forecasting

Piedrafita Acin et | Semiconductor 18 models | Semiconductor Gradient boosting

al. (2023) inventory & | tested; gradient | manufacturing outperformed statistical
demand forecasting | boosting data models; “Triple bottom
amid global | emphasized line” approach proposed
shortage

Kheawpeam et al. | Multi-channel retail | CatBoost vs | Thai retail sales | CatBoost best (SMAPE

(2022)

demand forecasting

qualitative meta-

(2023) inventory XGBoost, Linear | (2017-2021) 7-day: 24.13%, 30-day:

forecasting Regression 24.47%); improved
retail inventory control

Shirisha et al. | Agricultural ML-based Agri supply chain | Reduced stockouts &

(2022) warehouse demand data overstocking; optimized
management forecasting synchronization of sales
(AWMS) & profitability

Nasution et al. | Review of ML in | Descriptive & | Literature review | ML  forecasting 1

accuracy vs traditional;
enhanced decision-
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analysis (2010-
2022)

making &
competitiveness

Kedarisetty et al. | Smart  inventory | RNN, CNN, | Conceptual DL models 1 efficiency,
(2022) systems using deep | ANN framework accuracy & speed in
learning inventory management
Shukla et al. | Simulated stockout | Boosting Simulated 4-stage | Ensemble model
(2022) prevention in | (XGBoost, supply chain superior across policies;
supply chains AdaBoost, RF) + proactive inventory via
meta-learning ML
ensemble
UmaMaheswaran | Neural networks | ANN-based Mixed-method Neural networks critical
et al. (2022) for smart inventory | survey (61 | empirical analysis | in adaptive control,
management respondents) prediction & inventory
optimization
Gunasekera et al. | Forecasting ANN, KNN, | Supermarket data | Gradient boosting most
(2022) imported food | SVM, RF, | (Python, Orange) accurate; addressed
product demand Gradient stock-outs & suggested
Boosting inclusion of seasonality
Nathany et al. | Inventory ML + multi- | Global supply- | Data-driven models |
(2022) optimization under | objective chain data & cases | holding cost 15-20%, 1
disruption optimization service level 10-15%;
resilient systems post-
COVID
Ebrahimi et al. | Material flow & | Supervised ML+ | Norwegian road | ML improved stock-
(2022) infrastructure dynamic MFA network  (1980— | flow projections;
inventory 2050) included uncertainty
forecasting quantification
Stanelyté et al. | Retail demand | BART + KNIME | Retail sales | BART model effective
(2021) forecasting & | analytical (weekly data, | for replenishment;
inventory program 2019) integrated EOQ model
optimization suggested
Maheswari et al. | Stock market | LR + LSTM Indian sectoral | ML/DL predicted stock
(2021) prediction  using stocks (BSE/NSE) | prices effectively;
ML/DL supported informed

investment decisions

Iv. Propsoed Mathematical Model

Consider a discrete-time inventory system indexed by t = 0,1,2, ..., T. Let Let I, denote on-hand inventory at

the start of period t, Q; = 0 the order quantity placed at time ttt (arriving instantaneously for simplicity), and D;

the random demand realized during period t. The inventory balance (with backorders allowed) follows

IL+1=1+Q;— D,
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where I, can be negative to represent backorders; denote I = max(l,, 0) and I; = max(—I;,0).

Machine learning enters as a probabilistic demand predictor. At each decision epoch t we observe feature vector
x, (history, seasonality, prices, promotions, covariates) and use an ML model to produce a predictive distribution
P(D, + 11| x;). Practically this can be represented by a point forecast d,; = Ep[Dr41 | x¢] together with an
uncertainty measure (variance o2 ;, prediction interval, or full density).

The decision policy m maps state s; = (I, x;) to order Q; = 1(s;); the goal is to choose 7 to optimize long-run
performance while explicitly leveraging the ML forecast and its uncertainty.

Define the per-period cost function combining classical inventory costs: fixed ordering cost K (incurred if Qt >
0), per-unit ordering cost ccc, holding cost h per unit of I;F, and backorder (shortage) penalty ppp per unit of I; .
The instantaneous cost is

Ce(Ie, Qe De) = K1l(g,50p + €Q + hIfy + +pliyy.

The optimization objective is to minimize expected cumulative cost over a horizon T (or discounted infinite
horizon Y57, BT ... with discount 8 € (0,1):

m;n E[XI_, C.(I;, m(s.), D;)], subject to the inventory dynamics and feasibility Q. > 0, capacity constraints

Q: < Quuax if any, and service-level or chance constraints when required. Expectations are taken with respect to
the joint distribution of demands; when using the ML predictor, we replace the unknown distribution by P(D, +
1| x;) for forward sampling and policy evaluation.

There are multiple principled ways to embed ML uncertainty into the optimization. (1) Predict-then-Optimize /
SAA: use the predictive distribution P to generate scenarios

{Dtsﬂ}f:l and solve a sample average approximation of the stochastic program to compute an order Q, that
minimizes empirical expected cost across scenarios. (2) Risk-aware optimization: include risk measures such
as CVaR to penalize tail shortage risk:

mn g >: C] + ACVaR, (shortage cost), where A trades off mean cost vs tail risk. (3) Chance constraints /
Service levels: enforce Prp, . .p(I; + Q¢ — Dyyq = —B) = 1 — € to guarantee a target fill rate or maximum
backorder level BBB. The predictive interval or quantiles from the ML model give direct thresholds for such

constraints (e.g., set Q, so that I, + Q, equals the (1—¢) -quantile of P).

From a control viewpoint the stochastic dynamic programming (DP) Bellman equation for the value function
Vi(I, x:t) is

min
Ve, xet) = 0, = 0B~ (1) [CeUes Qe De) + Vs (s, Xes)),

where x;,; updates via an exogenous process (possibly depending on D;). Exact DP is usually intractable for
realistic state spaces; approximate dynamic programming (value function approximation), policy
parameterization (e.g., (s, S) or base-stock level policies), or RL/policy gradient methods can be used, with the
ML forecast acting as the simulator for future demand.
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A common and practical policy family is to convert the ML point forecast and uncertainty into a modified base-
stock rule: order up to level S, = dyyq + 240,41 + ¢(I,), Where z, is a safety factor derived from chosen service
level (or predicted quantile), o, is forecast standard deviation, and ¢(I;), accounts for lead time, pipeline
inventory, or cost asymmetries. This yields a closed-form rule when costs follow newsvendor structure for single
period; for multi-period problems the rule is adjusted using rolling forecasts and reoptimization.

Learning and calibration are essential: the ML model must be trained to minimize a loss aligned with the inventory
objective for example, asymmetric loss that penalizes under-prediction more heavily when shortage costs are high.
Alternatively, use decision-aware learning where the ML model is trained end-to-end with the inventory
optimization layer (differentiable surrogate or implicit gradients) so that forecasts directly improve final inventory
costs rather than pure RMSE. When full probabilistic outputs are available (e.g., quantile regression, Bayesian
models, or ensembles), they should be validated not only by likelihood or interval coverage but by downstream
metrics: average total cost, fill rate, stockouts, and service level. Solution methods include: sample average
approximation (SAA) with scenario generation from p; stochastic programming with chance constraints; robust
optimization that hedges against worst-case distributions within a divergence ball around p; approximate dynamic
programming (value approximation using basis functions or neural nets); and model-free RL training policies in
a simulator seeded by the ML predictor. Computational choices depend on horizon length, lead times,
dimensionality of features, and the fidelity of the predictive distribution. Practical implementation notes: perform
periodic retraining of the ML model to adapt to nonstationarity; include exogenous covariates (promotions,
holidays) in x;; maintain a feedback loop that updates predictive residual models so the optimizer accounts for
forecast bias; run sensitivity analyses to forecast error and cost parameters; and track evaluation metrics that matter
to stakeholders (total cost, service level, inventory turns). Using the ML predictor together with explicit
quantification of uncertainty and an optimization framework (SAA, chance constraints, or DP/RL) yields a
principled pipeline that reduces expected costs while meeting business service objectives.
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Figure 1: ML-Based Demand Prediction with Confidence Interval

Figure 1 illustrates the accuracy and uncertainty of the machine learning-based demand forecasting model across
twenty time periods. The line representing True Demand shows the actual customer demand data, while the
Predicted Demand line demonstrates the model’s forecasted values. The shaded grey region indicates the 95%
confidence interval, reflecting the model’s uncertainty range for each prediction. This figure emphasizes how
machine learning effectively captures demand patterns while quantifying the uncertainty inherent in stochastic
environments. Periods where the true demand lies outside the prediction interval suggest model underperformance
or sudden market fluctuations. Overall, this visualization demonstrates the predictive capability of ML models in
dynamic inventory systems, supporting better order decisions. It highlights that incorporating uncertainty through
confidence intervals allows inventory managers to adjust safety stocks more precisely, minimizing both stockouts
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and overstocking while enhancing operational efficiency and cost management in stochastic inventory
optimization.
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Figure 2: Trade-off Between Holding and Shortage Costs

Figure 2 displays the fundamental trade-off between holding cost, shortage cost, and total cost as a function of
the safety stock level. As safety stock increases, the holding cost rises linearly due to the additional expense of
maintaining inventory. Conversely, the shortage cost decreases exponentially because higher stock levels reduce
the probability of demand shortfalls. The total cost curve shows a U-shaped relationship, indicating an optimal
safety stock level where total cost is minimized. This optimal point represents the balance between overstocking
and understocking. The figure effectively demonstrates how inventory optimization models aim to identify this
equilibrium to achieve cost efficiency. Through integrating ML-based demand prediction into this model,
organizations can more accurately estimate safety stock levels that minimize total costs. The graphical insight
underscores the economic rationale behind inventory control and helps in making data-driven, cost-effective
stocking decisions in uncertain, fluctuating demand environments.
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Figure 3: Comparison of Inventory Optimization Strategies

Figure 3 compares the performance of three inventory optimization strategies Traditional, ML-based
Optimization, and Robust Optimization—in terms of average total cost and service level. The bar chart (in blue)
shows that the ML-based Optimization approach significantly reduces average total costs compared to traditional
methods, while the red line indicates that it achieves a higher service level of about 95%. The Robust Optimization
method performs slightly worse in cost but maintains good service reliability. This dual-axis visualization
highlights the superior performance of integrating machine learning predictions within stochastic inventory
models. Through accurately forecasting demand and adjusting ordering policies dynamically, ML-based
optimization enhances service reliability while simultaneously lowering operational costs. The figure captures the
practical advantage of predictive analytics in inventory systems improved customer satisfaction through better
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availability and reduced excess inventory. Hence, it supports adopting ML-driven inventory control for efficiency,
responsiveness, and strategic decision-making.

V. Conclusion

The integration of stochastic inventory models with machine learning—based demand forecasting offers a
transformative improvement in how organizations manage stock under uncertainty. Unlike traditional
deterministic models, this method continuously learns from historical and real-time data to forecast demand with
quantified uncertainty. Through using this predictive capability in optimization models, businesses can determine
optimal order quantities, balance holding and shortage costs, and maintain high service levels even in dynamic
market conditions. The results from multiple industrial applications show clear benefits higher forecast accuracy,
reduced cost, improved customer satisfaction, and greater resilience to disruptions. Machine learning not only
enhances forecasting accuracy but also makes inventory decisions smarter, faster, and more adaptive. In
optimizing stochastic inventory systems through machine learning transforms uncertainty from a problem into a
manageable and predictable component of supply chain planning.
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