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ABSTRACT 

As a single-stage object detection framework, YOLO (You Only Look Once) has gained prominence for its 

remarkable balance between speed and accuracy across diverse detection tasks. This research article provides a 

comprehensive survey of the YOLO family of algorithms, tracing their evolution from the earliest version to the 

most recent advancements. The review offers an in-depth analysis of the performance and defining characteristics 

of each iteration, with particular emphasis on YOLO’s applications in real-time detection, especially on embedded 

systems. Special attention is given to recent developments in model compression and optimization techniques 

aimed at addressing the challenges posed by the large size of YOLO models, thereby enabling deployment on 

resource-constrained devices. Practical implementation examples are also discussed to illustrate its applicability 

in real-world scenarios. Finally, the study highlights potential research directions, including novel architectural 

innovations and advanced training strategies, that may further enhance the YOLO framework. Overall, this review 

serves as a valuable reference for researchers and practitioners seeking insights into the evolving landscape of 

YOLO-based object detection. 
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1. Introduction 

Object detection is a fundamental task in computer vision that involves locating objects of interest within an image 

and accurately classifying each detected target. In recent years, it has become one of the most popular and widely 

studied tasks in computer vision due to its broad range of applications and rapid technological progress. 

Traditional object detection algorithms rely on sliding windows or image segmentation techniques to generate a 

large number of candidate regions. Features such as Histograms of Oriented Gradients (HOG) [1] are then 

extracted from these regions and passed to classifiers like Support Vector Machines (SVM) [2] for categorization. 

However, these approaches require producing numerous candidate boxes, which significantly reduces efficiency. 

Consequently, their speed and accuracy fail to meet the demands of real-world applications, creating a bottleneck 

for traditional methods. 
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The breakthrough came with the introduction of deep convolutional neural networks (CNNs), beginning with the 

release of AlexNet in 2012 [3]. Deep learning opened new avenues for object detection, leading to a wide range 

of models that leverage CNNs to enhance both accuracy and efficiency. These deep learning-based object 

detection methods can broadly be divided into two categories: region-based and regression-based. Region-based 

systems, also known as two-stage detectors, first generate candidate regions and then classify them using CNNs—

for example, the R-CNN framework [4]. In contrast, regression-based systems, known as one-stage detectors, 

bypass candidate region generation and directly perform object detection through regression analysis. 

Comparative studies reveal that two-stage detectors generally achieve higher accuracy but suffer from slower 

inference speeds, while one-stage detectors strike a balance with superior efficiency and real-time performance. 

Among one-stage detectors, the most influential and widely adopted framework is YOLO (You Only Look Once) 

[5]. 

Thanks to its impressive performance, YOLO has undergone continuous improvements and updates, leading to 

the latest version, YOLOv8 [6], along with other notable variants such as YOLOR [7] and YOLOX [8]. Shao et 

al. [9] provide a detailed discussion of YOLO algorithms, though their work focuses only on YOLOv5 [10] and 

excludes newer developments. Similarly, Terven et al. [11] present a summary of YOLO but in a less intuitive 

manner. 

To address these gaps, this article offers a comprehensive overview of YOLO models from YOLOv1 through 

YOLOv8, as well as YOLOR and YOLOX, to equip researchers with a deeper understanding of the YOLO family 

and guide them in selecting models best suited to their needs. 

The remainder of this paper is organized as follows: Section 2 presents the architectures of the YOLO family, 

summarizing them in terms of structure, input size, AP, AP50, FPS, and parameter counts. Section 3 discusses the 

improvements and applications of YOLO across various domains. Section 4 introduces model compression 

techniques and reviews the use of compressed YOLO models. Finally, Section 5 concludes with an overview of 

YOLO’s development trends and potential future research directions. 

 

2. Overview on key features of YOLO families 

The initial YOLO was presented by Joseph Redmon et al. in CVPR 2016. The YOLO means “You Only Look 

Once,” which glances at an image like a human and offhandedly knows what object is in the image, what they are 

doing, and where they are. Unlike traditional object detection models based on deep learning, YOLO had excellent 

accuracy and speed as a regression-based object detection algorithm. YOLO is an advanced one-stage object 

detection framework that has evolved over the years and spawned several versions. This section introduces the 

differences between YOLOv1-YOLOv8, YOLOX, and YOLOR. YOLO algorithm forgoes the traditional sliding 

window technique, and it divides the input image into 𝑆×𝑆 grids, each of which predicts B bounding boxes of the 

same class and the confidence of each grid for 𝐶 different classes. Each bounding box predicts five values: 

(𝑥,𝑦,𝑤,ℎ,𝑐), representing the bounding box’s position, size, and confidence, respectively. Each grid predicts 

(𝐵×5+𝐶) values, after which Non-Maximum Suppression (NMS) is used to remove duplicate detections. 

2.1 YOLOv1 

Accuracy—comprising both classification accuracy and localization accuracy—along with detection 

speed, are critical metrics for evaluating the performance of object detection models [12]. Unlike traditional 

methods that generate candidate boxes and classify them using CNNs, YOLO directly regresses bounding box 

coordinates and class probabilities at multiple positions in the image, thereby enabling efficient end-to-end object 

detection. 
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In YOLOv1 [5], the input image is resized to 448×448 and processed using features extracted by a CNN. The 

architecture employs a backbone network similar to GoogLeNet [13], consisting of 24 convolutional layers and 

two fully connected layers, with 1×1 convolutions applied to reduce feature map dimensions. The model is pre-

trained on ImageNet [14] and fine-tuned on the PASCAL VOC dataset for validation. YOLOv1 divides the input 

image into a 7×7 grid, with each grid cell predicting two bounding boxes, resulting in 7×7×2 = 98 candidate boxes 

and allowing the detection of up to 49 objects per image. 

Despite its efficiency, YOLOv1 struggles with detecting small objects and densely packed targets. On the 

PASCAL VOC 2007 benchmark, it achieved an average precision (AP) of 63.4%. 

2.2 YOLOv2 

 YOLOv2 [15], inspired by the VGG architecture [16], introduced several significant improvements over YOLOv1. 

It employed a new backbone, Darknet-19, consisting of 19 convolutional layers and five max-pooling layers. 

Unlike YOLOv1, which relied on fully connected layers for bounding box prediction—often leading to a loss of 

spatial information and reduced localization accuracy—YOLOv2 adopted anchor boxes from Faster R-CNN [17] 

to improve bounding box regression. Additionally, the integration of batch normalization enhanced convergence 

and overall model stability. Robustness was further achieved by training with variable input image sizes, allowing 

the model to adapt to objects at different scales. 

A notable contribution of YOLOv2 was its ability to extend detection to object categories with limited labeled 

samples. By jointly training on multiple datasets, including ImageNet for classification and MS COCO for 

detection, the authors introduced the WordTree hierarchical classification method, enabling real-time detection of 

over 9,000 object categories. This extended version became widely known as YOLO9000.On the PASCAL VOC 

2007 benchmark, YOLOv2 achieved an average precision (AP) of 78.6%, representing a 15.2% improvement 

over YOLOv1. 

2.3  YOLOv3 

YOLOv3 [18] introduced significant architectural enhancements by adopting Darknet-53 as its backbone. The 

design incorporated residual connections inspired by ResNet [19], allowing the network to be deepened without 

encountering gradient explosion issues, thereby improving convergence stability. To enhance detection across 

different object sizes, YOLOv3 employed a strategy similar to the Feature Pyramid Network (FPN) [20], 

performing multi-scale predictions by generating bounding boxes at three different scales. For anchor box design, 

k-means clustering was used to determine bounding box priors more effectively. Unlike YOLOv2, YOLOv3 

utilized three anchor boxes per scale, targeting large, medium, and small objects. By fusing feature maps across 

three scales and replacing the softmax function with a logistic classifier, YOLOv3 enabled multi-label 

classification, further improving flexibility in object detection. 

These improvements significantly enhanced performance on small object detection while maintaining high 

efficiency. In fact, YOLOv3 achieved detection speeds 3–4 times faster than earlier YOLO models when bounding 

box precision was relaxed, with comparable detection accuracy. 

At the time of its release, the benchmark for evaluating detection algorithms had shifted from PASCAL VOC to 

the more challenging MS COCO dataset. Consequently, YOLOv3 and later versions were assessed using COCO 

metrics. On the MS COCO test-dev 2017 dataset, YOLOv3 achieved an average precision (AP) of 31.0% and 

AP50 of 55.3% at 20 FPS, demonstrating its balance between speed and accuracy. 

2.4 YOLOv4 

YOLOv4 [21] introduced a range of optimization strategies categorized into two groups: bag-of-freebies and bag-

of-specials. The bag-of-freebies consists of techniques that enhance training without affecting inference speed, 

while the bag-of-specials includes modules that slightly impact inference time but provide significant performance 

gains. 
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A key innovation in YOLOv4 is the adoption of Cross Stage Partial (CSP) networks [22] and the Mish activation 

function [23] in the backbone. CSPNet addresses the problem of redundant gradient information in deep networks 

by partitioning feature maps and integrating gradients more effectively, thereby reducing the number of 

parameters and FLOPs while maintaining accuracy. These optimizations allow YOLOv4 to achieve higher 

detection performance compared to earlier YOLO versions, while also being efficient enough to train on a single 

GPU. 

2.5 YOLOv5 

YOLOv5 [10] shares a structural similarity with YOLOv4 but introduces flexibility through model scaling across 

different channel sizes. It provides five model variants—YOLOv5-N (Nano), S (Small), M (Medium), L (Large), 

and X (Extra Large)—ranging from lightweight models suitable for resource-constrained environments to larger 

models optimized for higher accuracy. Unlike earlier versions, YOLOv5 was developed in PyTorch, making it 

easier to deploy across diverse hardware platforms compared to YOLOv4. 

Although no official research paper has been published for YOLOv5, it has undergone continuous updates, with 

the latest iterations extending capabilities beyond detection to include image classification and instance 

segmentation, while also offering faster training. 

On the MS COCO test-dev 2017 benchmark, YOLOv5x6 achieved an AP of 55.8% with an input size of 

1536×1536. With a smaller input size of 640×640, YOLOv5x reached an AP of 50.7%, achieving speeds of over 

200 FPS on an NVIDIA Tesla V100, highlighting its balance of accuracy and real-time performance. 

2.6 YOLOvR 

In 2021, the YOLOv4 research team introduced You Only Learn One Representation (YOLOR) [7], a novel 

framework designed to enhance adaptability by integrating implicit knowledge into neural networks. Traditional 

CNN-based models primarily rely on explicit features learned during training, which often limits their ability to 

generalize to new or unseen tasks. YOLOR addresses this limitation by unifying explicit knowledge (learned 

directly from data) with implicit knowledge (derived subconsciously, similar to human intuition). This design 

equips the model with a learning mechanism that more closely resembles human cognitive processes, allowing it 

to generalize beyond the scope of training data. 

 

YOLOR’s unified representation enables its application across multiple computer vision tasks, including object 

detection and image segmentation. On the MS COCO test-dev 2017 benchmark, YOLOR-D6 achieved an AP of 

55.4% and an AP50 of 73.3% at 30 FPS on an NVIDIA Tesla V100. These results demonstrate that incorporating 

implicit knowledge into the network improves overall task performance, validating YOLOR as a significant step 

forward in object detection research. 

2.8. YOLOv6 

The Meituan Vision AI Department released YOLOv6[31] in 2022. The overall structure refers to YOLOv4 

but uses a more advanced mechanism. Firstly, they use a new backbone efficiency developed based on 

RepVGG[32]. Secondly, the neck of YOLOv6 adopts the PANet[25], and RepPAN is obtained after the neck is 

enhanced. YOLOv6’s architecture is similar to YOLOX. YOLOv6 also uses Efficient Decoupled Head and 

anchor-free technology. In addition, YOLOv6 also uses a self-distillation strategy to reduce the cost of reasoning. 

Similar to YOLOv5, YOLOv6 also provides multiple versions to facilitate model quantification and hardware 

deployment. It is also suitable for application in the industrial field. 

Evaluated on the MS COCO dataset test-dev 2017, YOLOv6-L achieves an AP of 52.5% and 𝐴𝑃50 of 70.0% 

on a NVIDIA Tesla T4 in the same environment with TensorRT. 

2.7   YOLOv7 

The research team of YOLOv4 and YOLOR propose YOLOv7[33] 2022. YOLOv7 outperforms all known object 

detectors in speed and accuracy, ranging from 5 FPS to 160 FPS. Like YOLOv4, YOLOv7 is trained from scratch 

on the MS COCO dataset. 
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The main changes in the architecture of YOLOv7 are Extended efficient layer aggregation networks (E-ELAN) 

by improved ELAN and Model scaling for concatenation-based models. If more computational blocks are stacked 

indefinitely, it may destroy the stable state of the network. ELAN[34] enables the deeper network to learn and 

converge efficiently by controlling the shortest and longest gradient path. E-ELAN proposed by YOLOv7 further 

takes expand, shuffles, and merges cardinality to achieve the ability to continuously enhance the learning ability 

of the network without destroying the original gradient path. 

Unlike architectures such as ResNet, applying model scaling to a concatenation-based architecture results in a 

change in the ratio of input and output channels, which leads to the model’s inefficiency for hardware. YOLOv7 

proposed a composite scaling approach that maintains the characteristics of the model at the time of initial design 

and maintains the optimal architecture. The composite scaling method proposed by YOLOv7 maintains the 

model’s properties at the initial design. It preserves the optimal structure by scaling the width factor on the 

transition layer with the same amount of variation. 

Evaluated on the MS COCO dataset test-dev 2017, when input image size is 640×640, YOLOv7 achieves AP of 

51.4% and 𝐴𝑃50 of 69.7% at 161 FPS by NVIDIA Tesla V100. 

2.8 YOLOv8 

The YOLOv5 team releases YOLOv8[6] in January 2023, and an official article still needs to be published. The 

main improvement as follows: 

Backbone: The backbone of YOLOv8 is CSPDraknet-53. As YOLOv5, YOLOv8’s C3 module is replaced by the 

C2f module with richer gradient flow, and different channel numbers are adjusted for different scale models to 

achieve further lightweight. Moreover, YOLOv8 still uses the SPPF module used in YOLOv5. 

Head: The Head part has two significant improvements compared with YOLOv5. Firstly, it is replaced with the 

current mainstream Decoupled-Head, which separates the classification and detection. Secondly, it is also changed 

from Anchor-Based to Anchor-Free. 

Loss: YOLOv8 abandons the previous IOU matching or unilateral ratio distribution method 

Table 1 

Summary of YOLO families architecture 

Model Backbone Neck Anchor 

YOLOv1 GoogLeNet,VGG-16 2×fully connected 

layers 

No 

YOLOv2 Darknet-19 fully connected 

layers 

Yes 

YOLOv3 Darknet-53 FPN Yes 

YOLOv4 CSPDarknet-53 SPP,PANet Yes 

YOLOv5 CSPDarknet-53 SPPF,CSP-PAN Yes 

YOLOR CSPDarknet-53 FPN,SPP Yes 

YOLOv6 EfficientRep Rep-PAN No 

YOLOv7 Extended-ELAN SPPCSPC No 

YOLOv8 Darknet-53 SPP,PAN No 

 

but takes the Task-Aligned Assigner positive and negative sample matching method. Furthermore, YOLOv8 

introduced Distribution Focal Loss (DFL)[35]. 
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Data augmentation can improve model performance, but introducing mosaic augmentation in training may have 

adverse effects. YOLOv8 turns off the Mosaic augmentation in the last ten epochs, improving accuracy. To meet 

the needs of different scenarios, YOLOv8 provides different size models of N / S / M / L / X scales. 

Evaluated on MS COCO dataset test-dev 2017, YOLOv8X achieves an AP of 53.9% with 283 FPS on NVIDIA 

Tesla A100 and TensorRT. 

 

Summary 

The architecture of the YOLO families is shown in Table 2, including the backbone, neck, and anchor. YOLOv2 

first proposes darknet-19 as the backbone, and YOLOv3 deepened the 19 convolutional layers to 53 layers. Almost 

all subsequent YOLO models use Darknet-53 or an improved version of darknet-53 as the backbone architecture. 

The initial YOLO does not use anchors, which were used in YOLOv2, and improves the prediction accuracy until 

YOLOX takes an anchor-free approach and performs well. Since then, subsequent versions of YOLO dropped the 

use of anchors. 

Table2 shows the performance, size, FPS, parameters, and GPU used for training mainstream YOLO versions. 

Among them, YOLOv1 and YOLOv2 were tested on PASCAL VOC2007. When YOLOv3 was released, the 

benchmark for object detection had changed from PASCAL VOC to Microsoft COCO. Therefore, the 

performance of subsequent versions is tested on Microsoft COCO. In addition, the YOLOv6 and YOLOv8x 

models are quantized by TensorRT. From the parameters in Table2, YOLO increasingly favors lighter models. In 

YOLOv8, the model YOLOv8v8m is only 3.7% less than the 𝐴𝑃50 of YOLOv8x, but the parameters are only 

about 38% of that of YOLOv8x, which is 25.9M. In many versions of YOLO, researchers can choose models 

according to their needs to find a balance between accuracy and speed. 

Table 2 

Summary of YOLO families main indexes 

Model Size AP(%) 𝐴𝑃50(%) GPU Params(M) FPS 

YOLOv1 448 63.4 - TitanX - - 

YOLOv2 448 78.6 - TitanX - - 

YOLOv3 416 31.0 55.3 - - 34.5 

YOLOv4 416 41.2 62.8 Tesla 

V100 

64.4 96 

YOLOv5x 640 50.7 68.9 Tesla 

V100 

86.7 208.3 

YOLOR-D6 1280 55.4 73.3 Tesla 

V100 

152.0 30 

YOLOv6 640 52.5 70.0 Tesla 

T4 

58.5 121 

YOLOv7 640 51.4 69.7 Tesla 

V100 

36.9 161 

YOLOv8x 640 - 53.9 Tesla 

V100 

68.2 283.3 

 

3. Compression methods for YOLO models 

The YOLO model has become more complex in pursuit of better performance. Model compression has become 

the focus of research to facilitate deployment on edge devices. This section introduces several techniques for 
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model compression, such as model pruning, parameter quantization, knowledge distillation, and lightweight 

model design[47]. 

Model Pruning: Model pruning is achieved by searching for redundant layers/channels in the model and deleting 

them with little or no impact on performance. By pruning the YOLOv3tiny network, Shi et al.[48] reduce the 

network computation by 68.7% Wu et al.[49] propose a real-time apple flower detection using the channel-pruned 

YOLOv4 model. The number of parameters is reduced by 96.74%. 

 

Parameter Quantization: Parameter quantization converts floating-point calculations to low-bit-rate integer 

calculations, such as converting float32 to int8 or int4. We quantize the YOLOv4 model on 8-bit through 

TensorRT and deploy it to the Jetson Nano, and it achieves the purpose of real-time detection of dirty eggs[50]. 

Wang et al.[51] deploy the pruned YOLOv3 detection model on the FPGA, and the model size is reduced by 80% 

with little change in accuracy. 

 

Knowledge Distillation: The teacher network is a complex pre-trained network, and the student network is a 

simple small network. By transferring knowledge, the student network that is more suitable for reasoning can be 

obtained through the teacher network. Chen et al.[52] propose a lightweight ship detector by knowledge 

distillation. Xing et al.[53] use ResNet101 as the teacher network and DD-YOLO as the student network, reducing 

the model complexity to 61.4%, which is more suitable for mobile deployment. 

 

Lightweight Model Design: Lightweight DNN model design refers to the redesign based on the existing deep 

neural network structure to reduce the number of parameters and computational complexity. Liu et al.[54] replace 

the backbone of YOLOv3 with ShuffleNet to realize real-time vehicle detection. Liu et al.[55] uses the backbone 

of YOLOv4 with Mobilenetv3, which improves the accuracy of an extensive pedestrian detection network. 

 

Conclusion 

This paper summarizes the models of the YOLO series and provides a detailed analysis of the critical feature of 

each model.Afterward, the application of YOLO in different scenarios was introduced. Finally, the method of 

YOLO model compression was briefly described, and an illustration of the application of YOLO in model 

compression. 

Although the YOLO series is the leader in the speed-accuracy balance in the field of target detection, its main 

work is for the computer side. In further work, how to make YOLO lighter and faster is worth pondering, 

especially embedded devices such as Nvidia Jetson Nano and Raspberry Pi. Moreover, it will become a trend to 

carry DNN models on FPGA to make the model run more efficiently. In addition, the technology combining AI 

and IoT will also bring more convenience to human life. Finally, since the release of YOLOv4, integrating various 

advanced algorithms has become an essential way to develop the YOLO algorithm. With the development of the 

YOLO framework, YOLO is more versatile and powerful and will be applied in a broader range of fields. 
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