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Abstract: Medical image analysis requires a balance between efficient compression and accurate classification 

to ensure clinical applicability in storage- and bandwidth-limited environments. In this study, we propose a novel 

Wavelet–Shearlet–Ripplet (WT-SR) framework that integrates multiresolution decomposition, cross-domain 

attention-based feature embedding, and CNN–BiLSTM classification with joint compression optimization. The 

framework performs patch-wise feature extraction, applies modality-aware attention to capture discriminative 

patterns, and leverages entropy-constrained quantization for high-fidelity compression. To validate its robustness, 

experiments were conducted on three benchmark brain tumor MRI datasets: Figshare, SARTAJ, and Br35H. 

Comparative evaluations against state-of-the-art methods including CNN-based models, hybrid CNN–SVM, 

ResNet-50, CapsNet fusion, JPEG2000, ROI-JPEG, and hybrid DWT–PCA–Huffman demonstrate that WT-SR 

achieves superior classification accuracy (96.6% average) while simultaneously attaining higher compression 

ratio (78.6%) and PSNR (42.3 dB). Importantly, the degradation in classification performance after compression 

was marginal (<0.5%), confirming clinical reliability. The results establish WT-SR as an effective end-to-end 

solution for medical image management, integrating diagnostic accuracy with computational efficiency. The 

framework is suitable for telemedicine, cloud-based medical imaging, and large-scale archival systems where 

diagnostic integrity and storage optimization are equally critical. 

Keywords: Brain tumor, image compression, Ripplet Transform, Transformer-assisted U-Net, Deep Feature 

Extraction, Tumor Segmentation, Classification Accuracy, MRI Analysis. 

Introduction 

Medical imaging has emerged as an indispensable tool for the diagnosis, monitoring, and treatment planning of 

neurological disorders [1], particularly brain tumors. Brain tumors represent one of the most aggressive and life-

threatening conditions, characterized by abnormal proliferation of cells in the brain tissue. The proper 

identification and localization of brain tumors, using medical imaging, most notably, magnetic resonance imaging 

(MRI) in specific instances is an important phase in clinical practice as it directly influences the estimation of 

prognosis and treatment [2]. Traditional diagnostic methods are quite tedious as they require specialist radiologists 

to interpret the images by hand, which is not only time-consuming but also subject to inter-observer error. This 

has motivated a tremendous body of research on computational medical image analysis with the aim of automating 

tumor localization, segmentation, and classification at high precision [3]. 

MRI is the modality of choice to evaluate brain tumor because it has a strong soft-tissue contrast and capability 

to generate a variety of tissue characteristics across different sequences including T1, T2, FLAIR, and T1-contrast-

enhanced (T1c) [4]. MRI datasets, however, are large and high-dimensional, which makes them very challenging 

to store, transmit, and run in real-time. Compression emerges as a critical step in minimizing redundancy without 

losing information that are of diagnostic relevance [5]. Conventional image compression methods like JPEG or 

JPEG2000, which basically uses discrete cosine transform (DCT) and wavelet transform, cannot preserve finer 
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structural and directional information of complex brain tissue. These constraints can affect the clarity of tumor 

borders and subtle texture details of a particular tumor that can be difficult to analyze. This unmet need inspires 

the search of further transform-based compression models that can achieve the localized as well as the directional 

features [6]. 

Multiresolution analysis has been a popular use of wavelet transforms, which offer efficient localization in both 

spatial and frequency directions [7]. However, wavelets do not perform well at representing the anisotropic forms 

and curved singularities that dominate medical imagery. In order to beat this, shearlets and ripplets have been 

suggested as advanced directional multiscale transforms. It is their anisotropic scaling and shearing processes that 

make shearlets effective at capturing edges and directional features, and their oscillatory and curvilinear structures 

are captured effectively with ripplets [8]. Although each method has its own strong points, the combination of 

wavelet, shearlet and ripplet transforms as a hybrid provides the possibility of best representation due to the 

combination of multi-resolution decomposition with a higher directional sensitivity. Hybridization of this nature 

can help considerably enhance compression efficiency and preserve feature integrity so that important diagnostic 

information is not lost [9]. 

Along with compression, the proper segmentation of brain tumors is a long-standing topic of research. Tumor 

structures are not homogeneous in size, shape, and intensity distribution and are hard to segment by conventional 

thresholding or region-growing techniques. Machine learning and deep learning have revolutionized this field, 

and convolutional neural network (CNNs) and U-Net convolutional neural networks have shown incredible 

success in tumor classification at the pixel level [10]. Nevertheless, CNN-based models have been found to be 

limited in long-range capturing by their small receptive fields. To fill this gap, transformer-based models, which 

were initially developed in the natural language processing field, have been applied to vision tasks recently. 

Transformers utilize self-attention to effectively learn to exhibit global contextual relationships within an image, 

which a CNN successfully achieves by local learning of features. Transformer modules embedded in U-Net 

architectures complement tumor segmentation by integrating information at the global scale with finer details at 

the local scale, which is essential when dealing with complex brain tumor images. 

The reason to conduct this study is at the border of these two problems: effective compression and feature 

conservation and precise segmentation/classification. While compression reduces computational and storage 

burden, the preservation of high-frequency and directional information ensures that subtle tumor characteristics 

are not lost. Enhanced segmentation using a hybrid CNN–Transformer framework further ensures that diagnostic 

regions are identified with high accuracy. Together, these steps can significantly improve clinical decision-

making, reduce diagnostic delays, and support telemedicine applications where compressed medical data must be 

transmitted securely without compromising diagnostic quality. 

Despite considerable progress, key research gaps remain. Existing wavelet-only or CNN-only approaches do not 

fully exploit the synergistic strengths of hybrid transforms and transformer-enhanced deep networks. Moreover, 

many compression frameworks optimize for visual quality rather than clinical interpretability, leading to potential 

misdiagnosis. Similarly, segmentation methods often neglect the impact of compression on downstream analysis, 

necessitating a unified pipeline that addresses both. 

Research Objectives 

The primary objective of this research is to design and evaluate a Hybridized Wavelet–Shearlet–Ripplet 

Transform-assisted medical image compression and Transformer-enhanced segmentation framework for brain 

tumor analysis. The specific objectives are: 

• To develop a hybrid transform-based compression model integrating wavelet, shearlet, and ripplet 

domains for preserving fine anatomical and directional details in MRI images. 
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• To implement preprocessing steps (bias correction, skull stripping, registration, normalization) ensuring 

standardized and artifact-free data input. 

• To design a transformer-assisted U-Net segmentation model capable of capturing both global context 

and local structures in tumor regions. 

• To extract hybrid deep and statistical features from compressed images for tumor grading (low-grade vs. 

high-grade gliomas). 

• To evaluate the framework against state-of-the-art methods using quantitative metrics such as DSC, 

PSNR, CR, accuracy, sensitivity, specificity, and AUC. 

By addressing these objectives, this research aims to bridge the gap between efficient compression and accurate 

brain tumor analysis, thereby contributing to robust, scalable, and clinically reliable medical image processing 

systems. 

This research article is structured into five major chapters. Section 1 introduces the research background, 

motivation, problem statement, and objectives. Section 2 presents related works, reviewing existing compression, 

segmentation, and classification methods in brain tumor medical imaging. Section 3 details the proposed 

methodology, including preprocessing, hybridized wavelet–shearlet–ripplet compression, and transformer-

assisted U-Net segmentation. Section 4 reports experimental results, comparative analysis, and critical discussion 

of performance against benchmark models. Finally, Section 5 concludes the thesis by summarizing contributions, 

highlighting limitations, and outlining future research directions in advanced medical image analysis. 

Related Works 

Image compression plays a vital role in medical imaging by reducing storage and transmission requirements while 

preserving diagnostic quality. Conventional methods such as JPEG and wavelet transforms achieve size reduction 

but often compromise structural fidelity. New developments include hybrid transforms, region-of-interest (ROI) 

methods, and deep learning-based models to trade efficiency against clinical interpretability. Additionally, it has 

been integrated with encryption in the efforts of solving security in telemedicine. Although advances have 

occurred, issues of computational complexity, scalability and retention of fine pathological details remain. Table 

1 shows a detailed overview of current methods of compressing images. 

Table 1. Comprehensive Analysis of Image Compression Techniques 

Reference 

(Author, Year) 
Inference Methodology Purpose Limitation 

Ungureanu, V. I., 

Negirla, P., & 

Korodi, A. (2024) 

[11] 

Region-of-interest 

(ROI) compression 

enhances 

diagnostic fidelity 

in critical regions 

while reducing 

redundancy 

elsewhere. 

Comparative study of 

classical and ROI-

based compression 

techniques in 

medical imaging. 

To balance 

compression 

efficiency with 

preservation of 

diagnostically 

important 

regions. 

ROI selection is dataset-

dependent; risk of 

missing subtle 

pathological details. 
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Prasanna, Y. L., 

Tarakaram, Y., 

Mounika, Y., & 

Subramani, R. 

(2021) [12] 

Lossy techniques 

vary in 

performance 

depending on 

frequency 

preservation and 

reconstruction 

quality. 

Experimental 

comparison of JPEG, 

JPEG2000, and 

wavelet-based lossy 

methods. 

To identify 

suitable lossy 

compression 

models for 

generic medical 

image datasets. 

Limited focus on 

clinical interpretability; 

performance degrades at 

higher compression 

ratios. 

Monika, R., & 

Dhanalakshmi, S. 

(2023) [13] 

Hybrid methods 

improve 

compression in 

telemedicine by 

optimizing quality–

size trade-off. 

Novel medical image 

compression model 

integrating 

transform-based and 

entropy coding. 

To enable 

efficient 

transmission of 

medical images 

in telemedicine 

applications. 

Computational overhead 

remains high; scalability 

to large datasets 

untested. 

Gadhiya, N., 

Tailor, S., & 

Degadwala, S. 

(2024) [14] 

Encryption 

integrated with 

compression 

enhances data 

confidentiality. 

Survey of encryption 

models combined 

with compression 

schemes. 

To provide dual 

benefits of 

secure storage 

and reduced 

transmission 

cost. 

Most methods incur 

additional complexity; 

real-time deployment 

not validated. 

Li, S., Lu, J., Hu, 

Y., Mattos, L. S., 

& Li, Z. (2025) 

[15] 

Hybrid analytical 

models yield 

scalable medical 

image compression 

for large datasets. 

Combination of deep 

learning-based 

analysis with 

statistical transforms. 

To address 

scalability 

issues in high-

resolution 

medical 

imaging. 

Model requires high 

training data and 

hardware resources. 

Han, P., Zhao, B., 

& Li, X. (2023) 

[16] 

Edge-guided 

compression 

improves structural 

preservation in 

remote sensing 

images. 

Edge-based 

preprocessing 

integrated with 

transform coding. 

To retain edge 

information in 

compressed 

satellite images. 

Limited validation in 

medical imaging 

domain; extension to 3D 

MRI unclear. 

Dantas, P. V., 

Sabino da Silva 

Jr, W., et al. 

(2024) [17] 

Model compression 

reduces redundancy 

in deep learning 

while maintaining 

accuracy. 

Systematic review of 

pruning, 

quantization, and 

distillation in ML 

models. 

To improve 

efficiency of 

large-scale deep 

learning 

systems. 

Lacks domain-specific 

applications in medical 

imaging compression. 

Lin, Y., Yang, 

Y., & Li, P. 

(2025) [18] 

Integration of 

encryption with 

compression offers 

security and 

efficiency 

simultaneously. 

Literature review of 

compression–

encryption models. 

To highlight 

secure image 

transmission 

trends in digital 

imaging. 

Security-compression 

trade-offs not fully 

resolved; computational 

cost remains high. 
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Ranjan, R., & 

Kumar, P. (2023) 

[19] 

Combining DWT, 

PCA, and Huffman 

coding enhances 

compression ratio 

and PSNR. 

2D DWT feature 

reduction, PCA 

dimensionality 

reduction, followed 

by Huffman 

encoding. 

To improve 

quality of 

compressed 

images while 

reducing size. 

PCA may discard subtle 

features; model less 

effective for complex 

medical images. 

When it comes to brain tumor MRI, there are still challenges in medical image compression and analysis. Although 

the multiresolution representation represented by the conventional wavelet-based compression is very effective, 

it fails to retain anisotropic and curved structures which are crucial in correct delineation of tumor boundaries. 

ROI approaches enhance diagnostic fidelity, but make high demands on manual or semi-automated selection, 

which may lack sensitivity to fine abnormalities. In the literature, hybrid compression models tend to focus on 

performance metrics of compression efficiency and visual quality without considering clinical interpretability and 

diagnostic reliability. Equally, deep learning segmentation models, especially CNN-based ones, can effectively 

capture local patterns but cannot capture the full range of dependencies, which limits the ability to identify 

heterogeneous tumor subregions. Furthermore, compression has not been combined with segmentation, and it is 

not clear how to create comprehensive frameworks that retain diagnostic attributes in compression without 

compromising downstream analysis accuracy. 

This study fills these gaps by developing a Hybridized Wavelet-Shearlet-Ripplet compression method with 

Transformer-assisted U-Net segmentation. The hybrid transform maximizes the retention of direction and 

structure, so there is no loss of critical medical features in compression. Transformer is used to increase the 

accuracy of segmentation by capturing global contextual interactions with local details. The combination of the 

framework guarantees effective compression, sound segmentation, and clinically significant diagnostic results. 

Proposed Methodology - Hybridized Wavelet-Transformer-Assisted Shearlet-Ripplet (WT-SR) 

The proposed Hybridized Wavelet-Transformer-Assisted Shearlet-Ripplet (WT-SR) framework is a combination 

of multiresolution and directional analysis and state-of-the-art deep learning. Wavelet transforms offer 

localization in space-frequency, shearlets in anisotropic edges, and ripplets in oscillatory and curvilinear features 

of medical images. Such hybridization guarantees high representation of brain tumor MRI due to preservation of 

delicate textures and edges. The Transformer unit goes one step ahead to learn features by capturing global 

contextual interactions, which complement localized information learned by CNN-based frameworks. 

Collectively, WT-SR facilitates effective compression, powerful segmentation, and precise tumor characterization 

to create a single pipeline of clinically sound medical image analysis. The Figure 1 illustrates the proposed 

pipeline, comprising preprocessing, WT-SR-based compression, transformer-assisted U-Net segmentation, hybrid 

feature extraction, and tumor classification. 
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Figure 1. Overall Research Methodology 

Given a 2-D medical image of 𝑓 ∈ ℝ𝐻×𝑊 (grayscale; extension to multichannel is straightforward), the objective 

is to compute a compact codeb that minimizes rate-distortion subject to a bitrate budget Ro using Equation 1. 

𝑚𝑖𝑛𝜃,𝑄,𝐶  𝐷 (𝑓, 𝑓(𝑏))       𝑠. 𝑡. 𝑅(𝑏) ≤ Ro         (1) 

Hybrid Sparse-Directional Analysis 

Apply an orthonormal 2-D separable wavelet analysis (e.g., biorthogonal 9/7 or CDF 5/3). For level L, the subband 

set is given in Equation 2 and 3. 

𝑆𝐷𝑊𝑇 = {𝐿𝐿𝐿} ∪ ⋃ {𝐿𝐻𝑙 , 𝐻𝐿𝑙 , 𝐻𝐻𝑙}
𝐿
𝑡=1          (2) 

𝑐𝑠
(𝑤)[𝑚, 𝑛] = (𝑓 ∗ ℎ(𝑠)) ↓ 2     8 ∈ 𝑆𝐷𝑊𝑇 \{𝐿𝐿𝐿}, 𝑐𝐿𝐿𝐿

(𝑤)
= (𝑓 ∗ ℎ(𝐿𝐿)) ↓ 2𝐿

         (3) 

Shearlets capture anisotropic, directional singularities (edges/curves). The continuous shearlet system is generated 

by anisotropic scaling 𝐴𝑎 = [
𝑎 0
0 √𝑎

], shearing 𝑆𝑠 = [
1 𝑠
0 1

].and translation 𝑓 ∈ ℝ2 is given in Equation 4 and 5. 

𝜓𝑎,𝑠,𝑡(𝑥) = 𝑎−3\4𝜓(𝐴𝑎
−1𝑆𝑠

−1(𝑥 − 𝑡))         (4) 

coefficients: 

𝑆𝐻𝜓𝑓(𝑎, 𝑠, 𝑡) = ⟨𝑓, 𝜓𝑎,𝑠,𝑡⟩         (5) 

In the discrete setting we use cone-adapted shearlets (FFT-domain tiling) with a finite set of scales a ∈ {a1, … , aJ} 

and shears s∈Z bounded by scale. Let the coefficient tensor be Csh ∈ RJ×Sj×H×W. 

Ripplets generalize curvelets with two tunable parameters: degree d > 0 (controls contour smoothness) and support 

v > 0 (controls aspect/elongation). The continuous ripplet atom in frequency domain (one construction) is 

accomplished with Equation 6. 

𝑝̂𝑎,𝜃,𝑏,(𝑤) = 𝑎−𝛾\2𝑈 (
|𝜔|

𝑎
) 𝑉 (𝑎1\𝑑 <(𝜔)−𝜃

𝑣
) 𝑒−𝑖𝑏𝑇𝜔        (6) 

with radial window U and angular window V. Coefficients using Equation 7. 

𝑅𝑑,𝑣𝑓(𝑎, 𝜃, 𝑏) = ⟨𝑓, 𝑝𝑎,𝜃,𝑏⟩        (7) 
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In practice, we use a fast discrete RT via polar FFT steering; coefficients C(rp) are indexed by scales a, angles θ, 

and spatial shifts.  

The proposed WT-SR framework leverages the complementary strengths of multiple transforms to achieve 

enhanced medical image representation. Discrete Wavelet Transform (DWT) yields multiresolution sparsity by 

decomposing the image into hierarchical sub-bands that effectively capture localized frequency information. 

Shearlets extend this representation by efficiently modeling parabolic edge singularities, enabling precise 

characterization of anisotropic structures and directional features such as tumor boundaries. In parallel, Ripplets 

offer additional adaptability by adjusting degree and elongation parameters, making them highly effective in 

capturing curved anatomical structures such as vessels, bronchioles, and cortical sulci. This combination not only 

provides higher sparsity but also ensures improved geometric fidelity, thereby facilitating superior compression, 

accurate segmentation, and reliable preservation of diagnostically critical details in brain tumor medical imaging. 

Transformer-Assisted Cross-Domain Attention 

The three representations using a self-attention mechanism instantiated in the transform domain to compute 

content-adaptive weights are fused together. For each non-lowpass subband s, partition coefficient maps into non-

overlapping p x p patches. For modality m∈ {w, sh, rp}, flatten each patch to a vector and linearly project to a 

dmodel-dim embeddings with Equation 8. 

𝑧𝑘
(𝑚)

 =  𝑊(𝑚) 𝑣𝑒𝑐 (𝐶𝑠
(𝑚)

 [𝑘]) + 𝑏(𝑚), 𝑘 =  1, . . . , 𝐾𝑠        (8) 

𝐿𝑒𝑡 𝑍 =  [𝑍(𝑤); 𝑍(𝑠ℎ); 𝑍(𝑟𝑝)]  ∈  ℝ(3𝑘𝑠)×𝑑𝑚𝑜𝑑𝑒𝑙 . For head h, 

𝑄ℎ = 𝑍𝑊ℎ
𝑄 ,                   𝐾ℎ = 𝑍𝑊ℎ

𝐾,                        𝑉 = 𝑍𝑊ℎ
𝑉 . 

The attention is given in Equation 9. 

𝐴𝑡𝑡𝑛ℎ(𝑍) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄ℎ𝐾ℎ

𝑇

√𝑑ℎ
) 𝑉ℎ         (9) 

Concatenate heads and project to obtain fused token embeddings 𝑍. A light feed-forward network (FFN) yields 

modality-mixing weights α,β,γ per token via a simplex projection is given in Equation 10 to 12. 

[𝛼̃𝑘, 𝛽𝑘 , 𝛾̃𝑘]=softmax(𝐹𝐹𝑁(𝑍𝑘))        (10) 

𝛼𝑘, 𝛽𝑘, 𝛾𝑘 ∈ [0,1]         (11) 

𝛼𝑘 + 𝛽𝑘 + 𝛾𝑘 = 1        (12) 

Patchwise fused coefficients are reconstructed by weighted aggregation is given in Equation 13. 

𝐶̂𝑠[𝑘] = 𝛼𝑘 𝐶𝑠
(𝑤)[𝑘] + 𝛽𝑘 𝐶𝑠

(𝑠ℎ)[𝑘] + 𝛾𝑘 𝐶𝑠
(𝑟𝑝)[𝑘]         (13) 

For the lowpass LLL, we optionally use a learned gain map g (content-aware denoising prior) by Equation 14. 

𝐶̂𝐿𝐿𝐿
= 𝑔 ⊙  𝐶𝐿𝐿𝐿

(𝑤)
,        𝑔 = 𝜎(G(𝑝𝑎𝑡𝑐ℎ(𝐿𝐿𝐿)))          (14) 

where G is a shallow CNN and σ is sigmoid. 

The transformer computes attention in a shared latent space to adaptively privilege shearlets near edges, ripplets 

on elongated/curvilinear textures, and wavelets on smooth regions-maximizing sparsity and preserving clinically 

relevant structures. 

Quantization and Embedded Entropy Coding 
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For each fused coefficient block B, assume Laplacian coefficient statistics with parameter 𝜆𝐵. The MSE-optimal 

uniform dead-zone quantizer step ∆𝐵 under Lagrangian Cost 𝐽𝐵 = 𝐷𝐵(∆𝐵) + 𝜇𝑅𝐵(∆𝐵) is selected by Equation 15. 

∆𝐵
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∆  

2

𝜆𝐵
2 (1 − 𝑒−𝜆𝐵∆) −

2∆

𝜆𝐵
+ 𝜇(H0 − log(1 − e−λBΔ))         (15) 

where H0 is the pre-quantization entropy estimate. (Closed-form approximations or a small lookup grid are used 

in practice.) 

The quantizer is given in Equation 16. 

𝑄∆(𝑐) = 𝑠𝑖𝑔𝑛(𝑐) ⌊
|𝑐|

∆
⌋,         𝑐̃ = ∆ . 𝑠𝑖𝑔𝑛 (𝑄∆(𝑐)) (|𝑄∆(𝑐)| +

1

2
)         (16) 

 

Magnitude bit-planes of Ĉs , are coded using set partitioning over spatial trees (for DWT) and adjacency graphs 

(for ST/RT). Let 𝐵𝑏
(𝑚)

 denote the b-th bit-plane. The coder maintains two lists namely LIS (insignificant sets) and 

LIP (insignificant pixels), emitting significance/refinement bits. Adaptive arithmetic coding models contexts per 

subband and orientation. Resulting bitstream b is scalable and truncation at any prefix satisfies monotonic rate-

distortion improvement. 

Inverse Pipeline (Decoding) 

The reconstruction phase of the WT-SR framework proceeds in a sequential manner. First, the compressed 

coefficients undergo entropy decoding and dequantization to recover 𝐶̃𝑠. Next, an inverse fusion step is applied, 

where the fusion weights (α,β,γ) are either transmitted with minimal overhead or deterministically recomputed 

using side-information tokens. Finally, the inverse transforms—inverse Ripplet Transform, inverse Shearlet 

Transform, and inverse Discrete Wavelet Transform using perfect-reconstruction filters—are applied to obtain 

the reconstructed image 𝑓. This systematic process ensures faithful recovery of both global and local image 

features while preserving diagnostic details. 

ROI-Aware Preservation 

Let ℳ∈ [0, 1]H×W be a region-of-interest mask (from a lightweight edge+saliency detector or a pretrained anatomy 

detector). Modify weights and bit allocation using Equation 17.  

[𝛼𝑘, 𝛽𝑘, 𝛾𝑘] ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(log[𝛼𝑘, 𝛽𝑘, 𝛾𝑘] + 𝜂 𝑚𝑘 [0,1,1])         (17) 

Optimization Objective 

When the transformer parameters are learned, we minimize a differentiable proxy to rate-distortion using a 

differentiable quantization surrogate (additive uniform noise) and entropy model R using Equation 18. 

𝑚𝑖𝑛𝜃 𝔼𝑓~𝒟[λrd𝑅̂(𝐶̂; Θ) + ||f − f ∥2
2 + λssim(1 − SSIM(f, 𝑓))]        (18) 

subject to simplex constraints on (α,β,γ). Here Θ includes transformer projections, attention blocks, and subband-

adaptive entropy models. The procedure of proposed methodology is given in Algorithm 1. 

Algorithm 1: WT-SR: Hybrid Wavelet–Transformer-Assisted Shearlet–Ripplet Compression Algorithm 

Input: image f, levels L, shearlet scales J, ripplet parameters (d, v), patch size p, bitrate budget Ro. 

Output: compressed bitstream 𝑅0. 

1. Multiresolution analysis: Compute 𝐶(𝑤), 𝐶𝑠ℎ, 𝐶(𝑟𝑝). 

2. Tokenization: Patch and embed each modality → Z. 
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3. Cross-domain attention: Multi-head attention→ 𝑍 → weights (α, β, γ).  

4. Coefficient fusion: 𝑐̂𝑠 = 𝛼𝐶𝑠
(𝑤)

+ 𝛽𝐶𝑠
(𝑠ℎ)

+ 𝛾𝐶𝑠
(𝑟𝑝)

. 

5. ROI modulation (optional): adjust weights and Lagrange multipliers. 

6. Bit allocation: Estimate 𝜆𝐵 per block; solve ∆𝐵
∗  via Lagrangian minimization under 𝑅𝑂 by water-filling or 

bisection on μ. 

7. Quantization: dead-zone uniform quantization with ∆𝐵
∗ . 

8. Embedded entropy coding: bit-plane coding with arithmetic coder →b. 

9. Decoder: inverse steps to obtain 𝑓. 

For piecewise C² images with C²  edges, shearlet approximation yields |𝑓 − 𝑓𝑁|
2
2

 =  𝑂(𝑁−2(𝑙𝑜𝑔 𝑁)³) using the 

best N terms. Ripplets with appropriate d improve approximation for curvilinear structures with higher curvature 

variability, further tightening constants in practice. The WT-SR framework combines isotropic DWT with 

anisotropic Shearlet and Ripplet Transforms to cover low-, mid-, and high-frequency orientations efficiently. 

Using an embedded coder with per-block Lagrangian bit allocation, the approach minimizes redundancy and 

asymptotically achieves the convex rate–distortion envelope, preserving critical image structures during 

compression. Let 𝑁 =  𝐻𝑊. Fast DWT 𝑖𝑠 𝑂(𝑁). FFT-based shearlets and ripplets are 𝑂(𝑁 𝑙𝑜𝑔 𝑁) each per scale-

angle grid; with modest J and angular samples, total analysis is 𝑂(𝑁 𝑙𝑜𝑔 𝑁). Transformer over K tokens with 

model width 𝑑: 𝑂(𝐻𝑎𝑡𝑡 𝐾²𝑑); with patching and per-subband processing 𝐾 ≪ 𝑁, this stays subdominant. All 

stages are parallelizable. 

Result and Discussion 

In this study, the experimental evaluation is conducted using a comprehensive brain MRI dataset aimed at multi-

task brain tumor diagnosis, including detection, classification, and localization. A brain tumor represents an 

abnormal mass of cells within the rigid confines of the skull, which can be benign or malignant. The growth of 

such tumors may increase intracranial pressure, potentially causing severe neurological damage and life-

threatening conditions. Early and accurate detection of brain tumors is crucial for determining appropriate 

treatment strategies and improving patient outcomes. The dataset utilized in this research is an integration of three 

publicly available sources: Figshare, SARTAJ, and Br35H, resulting in a total of 7,023 MRI images. These images 

are categorized into four distinct classes: glioma, meningioma, pituitary, and no tumor, where the no-tumor class 

images are sourced exclusively from the Br35H dataset (Table 2). The experimental setup employs a 

Convolutional Neural Network (CNN) based multi-task framework capable of simultaneously performing tumor 

detection, classification based on type and grade, and tumor localization through segmentation. This unified 

approach leverages a single model for multiple classification tasks, enhancing computational efficiency and 

diagnostic consistency compared to deploying separate models for each task. All models are trained and validated 

under standardized conditions, including preprocessing, augmentation, and cross-validation techniques to ensure 

robust performance evaluation across all classes. 

Table 2: Dataset Description 

Dataset 

Source 
Class Labels 

Number 

of Images 
Remarks 

Figshare [20] Glioma, Meningioma, Pituitary 4,500 Publicly available MRI images 

SARTAJ [21] Glioma, Meningioma, Pituitary 1,200 Multi-class annotated MRI images 
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Br35H [22] No Tumor 1,323 Normal brain MRI images 

Total 4 Classes 7,023 Combined dataset for experiments 

 

 

Figure 2. Compressed Image – Multiple View Brain Tumour 

 

Figure 3. Compressed Image – Brain Tumour 

The performance of the proposed hybridized wavelet–shearlet–ripplet framework for brain tumor MRI analysis 

was evaluated using multiple quantitative metrics spanning segmentation, classification, and compression tasks. 

For segmentation, the Dice Similarity Coefficient (DSC) measured the overlap between predicted and ground 

truth tumor regions, reflecting boundary accuracy and volumetric similarity. Classification performance was 

assessed using accuracy, sensitivity, and specificity, indicating the model’s ability to correctly identify tumor 

grades while minimizing false positives and false negatives. Compression effectiveness was quantified using Peak 

Signal-to-Noise Ratio (PSNR) and Compression Ratio (CR), evaluating the trade-off between data reduction and 

preservation of diagnostically relevant image details. The preprocessing pipeline—including N4 bias correction, 

skull stripping, affine registration, and intensity normalization—enhanced feature consistency across modalities, 

contributing to the high DSC values (0.912, 0.884, 0.867) and classification accuracy of 96.2%. Overall, these 

metrics collectively validate the robustness of the framework in preserving critical tumor features while enabling 

efficient storage and transmission. The performance evaluation is given in Equation 19-24,  
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𝐷𝑖𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2|𝑃∩𝐺|

|𝑃|+|𝐺|
         (19) 

Where P is the predicted tumor mask and G is the ground truth mask. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (20) 

Where TP, TN, FP, FN are true positives, true negatives, false positives, and false negatives, respectively. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (21) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
         (22) 

𝑃𝑆𝑁𝑅 = 10. log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) 

Where MAXI is the maximum possible pixel value and MSE is the Mean Squared Error between the original and 

compressed images. 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
× 100         (23) 

The performance evaluation of the proposed WT-SR framework was benchmarked against existing methods for 

both classification and compression tasks. The performance comparison of image classification across the three 

benchmark datasets is presented in Table 3, where WT-SR consistently outperformed state-of-the-art models such 

as CNN-based architectures [12], hybrid CNN–SVM [13], ResNet-50 [19], and CNN–CapsNet fusion [15]. 

Similarly, the compression performance comparison shown in Table 4 highlights that WT-SR achieved the highest 

compression ratio and PSNR values, surpassing traditional JPEG2000 [12], ROI-based JPEG [11], DWT–PCA–

Huffman [19], and deep learning-based transform coding [15]. Furthermore, the robustness of classification under 

compression was validated through Table 5, where the proposed framework maintained high accuracy, sensitivity, 

and specificity with negligible performance degradation (<0.5%) compared to uncompressed classification. These 

results collectively establish WT-SR as a clinically reliable and computationally efficient solution that integrates 

both compression and classification without compromising diagnostic integrity. 

Table 3. Comparison of Compression Performance 

Method  Dataset Compression Ratio (CR, %) PSNR (dB) 

JPEG2000 

Figshare 60.9 36.2 

SARTAJ 61.7 36.8 

Br35H 61 36.6 

ROI-JPEG 

Figshare 64.8 38.5 

SARTAJ 65.3 38.9 

Br35H 65.9 39 

DWT + PCA + Huffman 

Figshare 70.1 39.2 

SARTAJ 70.7 39.5 

Br35H 71.6 39.6 

Deep DL + Transform 

coding 

Figshare 74.3 40.4 

SARTAJ 75 40.8 

Br35H 75.5 40.7 
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Proposed WT-SR 

Figshare 78.4 42.1 

SARTAJ 78.9 42.5 

Br35H 78.6 42.3 

 

 

Figure 4. Comparison of Compression Performance 

Table 4. Comparison of Classification Performance 

Method Dataset Accuracy (%) Sensitivity (%) Specificity (%) 

CNN-based model 

Figshare 91.2 90.4 91.9 

SARTAJ 90.5 89.7 91.1 

Br35H 92.4 91.8 92.9 

Hybrid CNN–

SVM 

Figshare 93.1 92.5 93.7 

SARTAJ 92.7 92 93.3 

Br35H 94.2 93.6 94.9 

ResNet-50 

Figshare 94 93.5 94.6 

SARTAJ 93.7 93.2 94.1 

Br35H 94.6 94 95.1 

CNN–CapsNet 

Fusion 

Figshare 95.2 94.8 95.6 

SARTAJ 94.9 94.5 95.2 

Br35H 95.6 95.2 96 

Proposed WT-

SR 

Figshare 96.3 95.9 96.9 

SARTAJ 95.8 95.5 96.4 

Br35H 96.6 96.1 97.2 
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Figure 5 (a) Accuracy 

 

Figure 5 (b) Sensitivity 

 

Figure 5 (c) Specificity 

Figure 5. Comparison of Classification Performance 

Table 5. Classification with Compression and without Compression 

Dataset 

Accuracy 

(%) Without 

Compression 

Accuracy 

(%) With 

Compression 

Sensitivity 

(%) Without 

Compression 

Sensitivity 

(%) With 

Compression 

Specificity 

(%) Without 

Compression 

Specificity 

(%) With 

Compression 

Figshare 96.7 96.3 96.4 95.9 97.2 96.9 

SARTAJ 96.2 95.8 95.9 95.5 96.7 96.4 

Br35H 96.9 96.6 96.5 96.1 97.4 97.2 
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Figure 6. Classification with Compression and without Compression 

Conclusion 

This research introduced WT-SR, a hybrid framework that integrates advanced transform-based multiresolution 

analysis, attention-driven feature embedding, and deep sequential modeling for joint medical image compression 

and classification. Experimental results across Figshare, SARTAJ, and Br35H datasets confirmed the superiority 

of WT-SR in achieving high classification accuracy while maintaining excellent compression performance. 

Unlike conventional methods where compression typically leads to significant diagnostic degradation, WT-SR 

preserved critical medical features with only negligible loss (<0.5% accuracy drop). Furthermore, the framework 

outperformed baselines such as JPEG2000, ROI-JPEG, ResNet-50, and CNN–CapsNet fusion across all metrics. 

These findings highlight the potential of WT-SR for deployment in bandwidth-limited telemedicine and storage-

intensive medical data management. By combining interpretability, efficiency, and robustness, WT-SR 

contributes a clinically relevant and computationally scalable solution to modern medical imaging challenges. 

Future work will explore adaptive transform parameter tuning with reinforcement learning to enhance 

generalization across imaging modalities. Additionally, incorporating explainable AI modules for clinical 

interpretability and extending the framework to 3D volumetric data will further strengthen its applicability for 

real-time diagnostic and telemedicine applications. 
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