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Abstract: This study aims to assess the buckling behaviour of laminated composite plates, both with and without 

delamination, with an enhanced hexahedral solid-shell finite element framework grounded in the advanced 

Hexahedral Solid-Shell Finite Element method. This technology addresses significant numerical issues, including 

volumetric locking and transverse shear, hence ensuring high accuracy in forecasts throughout the process. The 

critical buckling loads of virgin plates with symmetric and quasi-isotropic layups were examined and contrasted 

with those of plates exhibiting various delamination sizes and configurations. The data indicate that symmetric 

layups exhibit greater buckling loads; however, the presence of delamination significantly affects buckling 

capacity, especially for bigger delamination located near the centre of the structure. These findings illuminate the 

structural behaviour of delaminated composites under compressive stresses applied within the material's plane. 

Keywords: Laminated Composite Plates; Buckling Load; Enhanced Hexahedral Solid-Shell Finite Element; 

Assumed Natural Strain.  

INTRODUCTION 

It is common knowledge that delamination is an extremely common reason for the failure of laminated composite 

structures. It can also result in a significant decrease in the stiffness and load-carrying capacity (LCC) of these 

structures, particularly when they are subjected to inplane compression and shearing. Initial flaws, in-service 

damages, and excessive stress concentration in the region of geometric or material discontinuities are all potential 

causes of delamination (Gangwar, Agrawal, & Joglekar, 2021). Delamination can also be caused by 

discontinuities in the material. In addition, when the material is compressed in the plane of the structure (Mondal, 

& Ramachandra, 2020)., the delamination may expand fast, which may result in a failure of the structure. 

Numerous studies, including analytical, numerical, and experimental investigations, have been conducted in 

recent years with the purpose of gaining an understanding of the behaviour of laminates that contain delamination 

when they are in the buckling along with post-buckling phases. Both the influence of extension-bending coupling 

(Karimi and Amin Yazdi, 2023) and the bearing of transverse shear deformation (Ameri et al., 2020) on the 

buckling and post buckling of delaminated composites are taken into consideration in some of this research. To 

model the layered structures, several different approaches have been proposed. One of these approaches is the 

equivalent singular layer model, which includes the first order shear deformable theory along with the higher 

order shear deformable theory (HSDT) (Xia, et al., 2024). These models are simple to implement, and the count 

of degrees of freedom that are required is not dependent on the count of layers (Hebbar et al. 2020).  
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Figure.1 Buckling modes of delaminated composite plates (schematic view): (a) local mode, and (b) mixed 

mode along with (c) global model (Deng, et al. 2020). 

Despite the fact that the HSDT provides a satisfactory description of the displacement and stress field in isotropic 

or low modulus ratio situations (Ansari, Hasrati, & Torabi, 2020)., it is possible that it may not provide correct 

findings when the modulus ratio is significant. It has been discovered that layer-wise models Ren, Zhao, and 

Zhang (2020) and Khoshgoftar, Karimi, and Seifoori (2022) can contribute to the development of superior 

solutions for such a need. The plate and shell type models are usually reduced surface models. These models are 

always this type. When delamination is present, they become more difficult than they were before (Deng, et al. 

2020). The application of solid shell formalism with a three-dimensional aspect, which was previously utilised to 

investigate the delamination problem, became less difficult (Mittelstedt, et al., 2022) The utilisation of these 

components results in the emergence of locking issues: shear locking along the volumetric and transverse planes. 

Through the utilisation of decreased plate and shell, the investigation of composite structures that exhibit 

delamination is carried out. Solid shell elements are going to be utilised in our investigation of these issues. There 

have been several different approaches that have been suggested to solve this issue, with the most effective of 

these being categorised as mixed methods. For these formulations, it is possible to make distinct field assumptions 

for strain, stress, and/or incompatible displacements, which can then be subsequently incorporated into the 

associated functional. The assumed natural strain (ANS) methodology (Kulikov & Plotnikova, 2020) and the 

Enhanced Hexahedral Solid-Shell Finite Element formulation (Pfefferkorn & Betsch, 2020) are two examples of 

the procedures that can be derived from these methods. When using the latter approach, it is possible to avoid 

using the volumetric and transverse shear locking method, and it is also possible to achieve a high level of accuracy 

even when using distorted element forms (Jin et al., 2020). It is common knowledge that delamination is one of 

the most common reasons for the failure of laminated composite structures (Khan, & Kim, 2022). It can also result 

in a significant decrease in the stiffness    and LCC of these structures, particularly when they are subjected to in 

plane compression and shearing. Initial flaws, in-service damages, and excessive stress concentration in the region 

of geometric or material discontinuities are all potential causes of delamination (Huang, & Bobyr, 2023). The 

grounds of this method come from the important scientific work of Pfefferkorn, & Betsch, (2020). where the strain 

field is enlarged with the inclusion of additional variables, usually referred to as enhancing parameters, as given 

by Eq. (1.1). It should be noted that these additional variables don't really have physical meaning and are 

eliminated at the element level: 

𝐸 = 𝐸𝑐 + 𝐸̃ ……(1.1) 

where 𝐸𝑐 and 𝐸̃ are respectively the compatible part and the enhanced part of the Green-Lagrange tensor. 

The variational foundation of the finite element tactic utilized with enhanced assumed strain fields is grounded in 

the well-known three field Hu -Washizu principal, which, by using Eq. (1.1), takes the following forms: 
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Π(𝑢, 𝐸̃, 𝑆) = ∫ 
𝑉

  (𝜓(𝐸̃ + 𝐸𝑐) − 𝑆: 𝐸̃)𝑑𝑉 − Π𝑐𝑡𝑟(𝑢) = 0…… (1.2)

Π𝑒𝑥𝑡(𝑢) = ∫ 
𝑉

 𝐹𝑉 ⋅ 𝑢𝑑𝑉 + ∫  
∂𝑉𝑓

 𝐹𝑆 ⋅ 𝑢𝑑𝐴…… (1.3)
 

where 𝜓 is the strain energy function and 𝑢 and 𝑆 are the displacement and the Piola-Kirchoff stress fields, 

respectively. Also, in the equations appear the prescribed body force 𝑭𝑉 and surface traction 𝐹𝑆. 

Invoking the orthogonality condition: 

∫ 
𝑉

𝑆: 𝐸̃𝑑𝑉 = 0……(1.4) 

Reducing the count of independent variables in the original function to just two, the weak form of this modified 

reduced function may be obtained with the direction derivative leading to: 

𝐺(𝑢, 𝐸̃) = ∫ 
𝑉

 𝑆: (𝛿𝐸𝑐 + 𝛿𝐸̃)𝑑𝑉 − ∫ 
𝑉

 𝐹𝑉𝛿𝑢𝑑𝑉 − ∫  
𝑖𝑉𝐽

 𝐹𝑆𝛿𝑢𝑑𝐴 = 0

 

…… (1.5) 

This equation must be linearized to take the following form: 

𝐷𝐺. (Δ𝑢, Δ𝐸̃) = ∫ 
𝑉

 𝛿𝐸𝑐: ℂ: (Δ𝐸𝑐 + Δ𝐸̃)𝑑𝑉 + ∫ 
𝑉

 𝑆: 𝛥𝛿𝐸𝑐𝑑𝑉 + ∫ 
𝑉

 𝛿𝐸̃: ℂ: (𝛥𝐸𝑐 + 𝛥𝐸̃)𝑑𝑉 …… (1.6)

 

 

where ℂ is the elasticity tensor. Eq. (1.6) will be solved by the Newton-Raphson method. 

Enhanced Hexahedral Solid-Shell Finite Element method  

The compatible strain-displacement relations matrix at the element level is given by 

𝐁𝐼 =

[
 
 
 
 
 
 
 
 
 
 

g1
𝑇 N𝑡,1

g2
𝑇 N𝑡,2

∑ 

4

𝐿=1

 
1

4
(1 + 𝜉𝐿

1𝜉1)(1 + 𝜉𝐿
2𝜉2)g3

𝐿 N𝑡,3
𝐿

g2
𝑇 N𝑡,1 + g1

𝑇 N𝑡,2

1

2
[(1 − 𝜉2) (g3

𝐵𝑇
 N𝑡,1

𝐵 + g1
𝐵𝑇

 N𝑡,3
𝐵 ) + (1 + 𝜉2) (g3

𝐷𝑇
 N𝑡,1

𝐷 + g1
𝐷𝑇

 N𝑡,3
𝐷 )]

1

2
[(1 − 𝜉1) (g3

𝐴𝑇
 N𝑡,2

𝐴 + g2
𝐴𝑇

 N𝑡,3
𝐴 ) + (1 + 𝜉1) (g3

𝑐𝑇
 N𝐼,2

𝐶 + g2
𝑐𝑇

 N𝑡,3
𝐶 )] ]

 
 
 
 
 
 
 
 
 
 

…… (1.7) 

where 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐴, 𝐵, 𝐶 and 𝐷 are given in Fig. 1.1 
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Fig.2 Strain interpolations points: (a) Shear strain; (b) Transverse strain. 

From this formulation, we obtain two types of elements the solid element and the solid shell element. The basic 

equation of the buckling analysis is in the form of an eigenvalue problem: 

(𝐾𝑒 − 𝐿𝑇𝐻−1𝐿)𝜙 = 𝜆𝐾𝐺𝜙 ……(1.8) 

where 𝜙 is the generalized global displacement eigenvector. This eigenvalue problem is solved using the subspace 

iteration method. The lowest eigenvalue 𝜆1 derived from the subspace iteration approach represents the buckling 

load, while its associated eigenvector denotes the appropriate buckling mode. 

Research Problem 

De-laminations in composite laminates can lower rigidity and disrupt material balance in symmetric laminates. 

De-laminations can rapidly increase under post-buckling pressures, reducing structural strength and resulting in 

disastrous collapse. 

Objective 

To investigate the interplay between local and global buckling behaviours of laminated composite plates across 

several factors, comprising delamination size, and aspect ratio, and width-to-thickness ratio, and stacking 

sequences, along with the positioning of delamination and multiple delamination’s. 

METHODOLOGY 

Enhanced Hexahedral Solid-Shell Finite Element method  

The Enhanced Hexahedral Solid-Shell Finite Element Method was utilized to analyze the buckling behavior of 

laminated composite plates with and without delamination’s. This approach employed eight-node hexahedral 

solid-shell elements, providing a detailed three-dimensional representation of the plates. The Enhanced 

Hexahedral Solid-Shell Finite Element Method was integrated into the formulation to overcome numerical 

challenges such as transverse shear and volumetric locking, ensuring precise and reliable results even in the 

presence of distorted element geometries. Square laminated plates with varying aspect ratios were modeled, and 

their critical buckling loads were evaluated under uniform in-plane compressive loads. The study included pristine 

plates to establish baseline behavior and plates with delamination of varying sizes and positions to assess their 

impact on structural stability. Delamination was modeled as through-the-width discontinuities, with parameters 
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such as size (10%, 20%, and 40% of the plate area) and position (center and edge) systematically varied. 

Numerical results were obtained and analyzed using Newton-Raphson iterative methods to ensure convergence 

of the non-linear finite element equations. 

Model Parameters 

Geometry: Square laminated plates with dimensions 500 mm × 500 mm × 5 mm. 

Material Properties 

1. 𝐸1 = 135GPa, 𝐸2 = 10GPa. 

2. 𝐺12 = 𝐺23 = 5GPa. 

3. 𝜈12 = 0.25. 

Stacking Sequences: Symmetric  ([0∘/90∘/90∘/0∘]) and quasi-isotropic ([45% /−45∘/45∘/−45∘]) layups. 

Boundary Conditions: Simply supported edges subjected to uniform in-plane compressive loads. 

1 Without Delamination’s: Pristine plates were analyzed to establish baseline critical buckling loads for 

various stacking sequences and aspect ratios ( 𝑎/𝑏 = 1.0,1.5 ). 

2 With Delamination’s: Delamination’s were modeled as through-the-width discontinuities at the mid-

plane. Delamination sizes ( 10%, 20%, and 40% of plate area) and positions (center and edge) were 

studied to determine their effect on buckling loads. 

RESULTS AND FINDINGS 

Buckling Loads Without Delamination 

Table.1 Buckling loads without delamination 

Stacking Sequence Aspect Ratio (a/b) Critical Buckling Load (𝐤𝐍) 

[0∘/90∘/90∘/0∘] 1.0 365 

[0∘/90∘/90∘/0∘] 1.5 280 

[45∘/−45∘/45∘/−45∘] 1.0 345 

[45∘/−45∘/45∘/−45∘] 1.5 265 

 

 

Figure.3 Comparison of critical buckling loads for symmetric and quasi-isotropic layups across different aspect 

ratios without delamination. 
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Pristine laminated plates demonstrated superior buckling performance, consistent with the expected structural 

stability of undamaged composite materials. As seen in Table 1.1, symmetric layups ([0°/90°/90°/0°]) exhibited 

higher critical buckling loads compared to quasi-isotropic layups ([45°/-45°/45°/-45°]) for all aspect ratios 

analysed. For plates with an aspect ratio (a/ba/ba/b) of 1.0, the symmetric layup achieved a critical buckling load 

of 365 kN, outperforming the quasi-isotropic configuration by 20 kN (approximately 5.8%). This difference 

highlights the advantage of symmetric stacking sequences in maintaining uniform stress distribution and structural 

integrity under compressive loads. When the aspect ratio increased to 1.5, both layups experienced a drop in 

buckling loads owing to the increased slenderness of the plates. However, the symmetric layup still maintained a 

higher critical load of 280 kN compared to 265 kN for the quasi-isotropic layup, reflecting a similar trend of 

superior performance. 

The variation in critical buckling loads across stacking sequences and aspect ratios is graphically illustrated within 

Figure 1.2. The figure clearly demonstrates the influence of layup configuration and aspect ratio on the buckling 

behaviour. Symmetric layups consistently provided higher buckling resistance, emphasizing their suitability for 

applications requiring enhanced structural stability. 

Impact on Delamination with Buckling Loads 

Table.2 Impact on delamination with buckling loads 

Delamination Size 

(%) 
Position 

Stacking 

Sequence 

Critical Buckling Load 

(𝐤𝐍) 

Reduction 

(%) 

10 Center [0∘/90∘/90∘/0∘] 330 9.6 

20 Center [0∘/90∘/90∘/0∘] 300 17.8 

40 Center [0∘/90∘/90∘/0∘] 240 34.2 

20 Edge [0∘/90∘/90∘/0∘] 315 13.7 

 

 

Figure.4 Impact of delamination size and position on buckling loads and reduction percentages. 

The presence of delamination significantly reduced the buckling capacity of laminated composite plates. This 

effect was observed to intensify with increasing delamination size and was more pronounced when delamination’s 

were located at the centre of the plate, as shown in Table 1.2. For a symmetric layup ([0°/90°/90°/0°]), the critical 

buckling load decreased from 365 kN in a pristine condition to 330 kN when a 10% delamination was introduced 
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at the centre of the plate. This corresponds to a reduction of 9.6%. As the delamination size increased to 20% and 

40%, the critical buckling loads dropped further to 300 kN and 240 kN, resulting in reductions of 17.8% and 

34.2%, respectively. When the delamination was positioned at the edge of the plate, the reduction in buckling load 

was less severe. For a 20% delamination at the edge, the critical buckling load was 315 kN, with a reduction of 

13.7%, compared to 17.8% for the same size delamination at the centre. This highlights the critical role of 

delamination location in determining the structural integrity of composite plates. Figure 1.3 illustrates the impact 

of delamination size and position on the critical buckling loads and reduction percentages. The central 

delamination cases show a steeper decline in buckling capacity as the size increases, whereas edge delamination’s 

demonstrate a relatively moderate impact. 

DISCUSSION  

Buckling Loads Without Delamination 

Pristine laminated composite plates exhibit superior buckling resistance, with symmetric layups outperforming 

quasi-isotropic configurations. The results confirm that symmetric stacking improves structural stability due to 

uniform stress distribution across layers. Variations in aspect ratios also influence critical buckling loads, where 

increasing the aspect ratio leads to a decrease in stability. 

Impact of Delamination on Buckling Loads 

The presence of delamination drastically reduces the buckling capacity of the plates. The extent of reduction 

correlates with delamination size and position: 

1. Size: Larger delamination (e.g. 40% of the plate area) result in the most significant reductions, up to 

34.2%, as they weaken the structural integrity of the plate. 

2. Position: Centrally located delamination cause more severe reductions compared to edge delamination 

due to their direct impact on the critical load-carrying regions. 

Stacking Sequence and Delamination 

Symmetric layups remain more robust against delamination-induced buckling degradation compared to quasi-

isotropic layups, which are inherently less resistant due to anisotropic stress propagation. 

CONCLUSION 

This study highlights the critical role of stacking sequences and delamination characteristics on the buckling 

performance of laminated composite plates. Symmetric stacking sequences provide superior performance under 

in-plane compressive loads. However, delamination, particularly large and centrally located ones, considerably 

weaken the structure, underscoring the need for rigorous inspection and mitigation in composite design. Future 

research can explore advanced mitigation techniques, such as tailored layups and smart materials, to enhance 

delamination resistance. 
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